Transcriptional modulation of pattern recognition receptors in acute colitis in mice.

Biochim Biophys Acta

Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands.

Published: December 2013

Pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), contribute to the development of intestinal inflammatory diseases, like inflammatory bowel disease (IBD). Supporting investigations of the underlying mechanisms of IBD, this study provides an extensive PRR expression survey together with T-cell associated factors along the murine colon during experimental colitis. 8-12 week-old C57BL/6 mice were treated with dextran sodium sulfate (DSS) to induce colitis. The mRNA expression levels of Tlr1-9, Nod1, Nod2, T cell subset-associated master transcription factors and cytokines were determined using qPCR. The expression of TLR2, 4, 5 and 6 was determined with immunohistochemistry. Th1 and Th17 associated responses were quantified in the mesenteric lymph nodes (mLNs) using flow cytometry. In DSS treated mice, the mRNA expression of the majority of PRRs was increased relative to healthy controls and correlated with the degree of inflammation. The exceptions were Tlr1 and Tlr5, which displayed unchanged and down-regulated transcription, respectively. Furthermore, in healthy animals, there was increased transcription of Tlr2, 3 and 5 near the caecum as opposed the region near the rectum. Within the inflamed regions, the mRNA expression of Th1-, Th17- and regulatory T-cell associated cytokines was enhanced, while there was no change for Th2-associated cytokines. In agreement with the mRNA expression, enhanced IFNγ and IL-17 producing cells were observed in stimulated mLNs. This study provides an extensive expression survey of PRRs along the colon during the acute colitis and shows that the induced inflammation is characterized by a Th1- and IL-17 mediated cytokine response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2013.07.004DOI Listing

Publication Analysis

Top Keywords

mrna expression
16
pattern recognition
8
recognition receptors
8
acute colitis
8
study extensive
8
expression survey
8
t-cell associated
8
expression
7
transcriptional modulation
4
modulation pattern
4

Similar Publications

Complex transcription regulation of acidic chitinase suggests fine-tuning of digestive processes in Drosera binata.

Planta

January 2025

Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.

DbChitI-3, Drosera binata's acidic chitinase, peaks at pH 2.5 from 15 °C to 30 °C. Gene expression is stimulated by polysaccharides and suppressed by monosaccharide digestion, implying a feedback loop in its transcriptional regulation.

View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

Aim: Periodontitis is a chronic inflammatory disease initiated by dysbiosis of the local microbial community. As a non-specific phosphodiesterase inhibitor, dipyridamole features anti-oxidant and anti-inflammatory properties. This study aimed to investigate the effects of dipyridamole in an experimental rat model of periodontitis.

View Article and Find Full Text PDF

[High mobility group protein B1(HMGB1) promotes myeloid dendritic cell maturation and increases Th17 cell/Treg cell ratio in patients with immune primary thrombocytopenia].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Hematologic Disease Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Wulumuqi 830011, China. *Corresponding author, E-mail:

Objective This study investigated the regulatory effect of high mobility group protein B1 (HMGB1) in the peripheral blood of patients with primary immune thrombocytopenia (ITP) on myeloid dendritic cells (mDC) and Th17/regulatory T cells (Treg) balance. Methods The study enrolled 30 newly diagnosed ITP patients and 30 healthy controls.Flow cytometry was used to measure the proportion of mDC, Th17, and Treg cells in the peripheral blood of ITP patients and healthy controls.

View Article and Find Full Text PDF

Background: Ferroptosis and immune responses are critical pathological events in spinal cord injury (SCI), whereas relative molecular and cellular mechanisms remain unclear.

Methods: Micro-array datasets (GSE45006, GSE69334), RNA sequencing (RNA-seq) dataset (GSE151371), spatial transcriptome datasets (GSE214349, GSE184369), and single cell RNA sequencing (scRNA-seq) datasets (GSE162610, GSE226286) were available from the Gene Expression Omnibus (GEO) database. Through weighted gene co-expression network analysis and differential expression analysis in GSE45006, we identified differentially expressed time- and immune-related genes (DETIRGs) associated with chronic SCI and differentially expressed ferroptosis- and immune-related genes (DEFIRGs), which were validated in GSE151371.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!