CB1 cannabinoid receptor agonist prevents NGF-induced sensitization of TRPV1 in sensory neurons.

Neurosci Lett

Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792-3272, USA.

Published: September 2013

AI Article Synopsis

  • Researchers examined how cannabinoids impact pain mediated by the TRPV1 channel and nerve growth factor (NGF), which are crucial in inflammatory pain.
  • The study found that NGF increased sensitivity to pain in primary sensory neurons, but cannabinoid activation of CB1 receptors reduced this sensitization.
  • When the CB1 receptor was blocked, the protective effect of cannabinoids against NGF-induced pain sensitization was lost, suggesting cannabinoids may help alleviate pain by preventing TRPV1 sensitization.

Article Abstract

The transient receptor potential vanilloid type 1 channel (TRPV1) and nerve growth factor (NGF) are important mediators of inflammatory pain. NGF released during inflammation sensitizes TRPV1 in afferent nerve endings of peripheral nociceptors, increasing pain sensation. Cannabinoids, by activating CB1 G protein-coupled receptors, produce analgesia in a variety of pain models, though the exact mechanisms are not known. We tested the hypothesis that activation of the CB1 receptor by cannabinoids attenuates NGF-induced TRPV1 sensitization. TRPV1-mediated currents were measured in acutely isolated primary sensory neurons with the whole-cell patch clamp technique using capsaicin (100 nM) as the agonist. After the first capsaicin application, during which the baseline current was measured, cells were exposed to NGF (100 ng/mL), and the capsaicin application was repeated after 5 min. NGF sensitized TRPV1 in 31.0% of cells (13 of 42), with a mean (±SE) increase in the capsaicin-induced current of 262 ± 47% over the baseline current. When the cannabinoid agonist ACEA (arachidonoyl-2'-chloroethylamide; 10nM) was given before NGF, only 10.8% of cells (4 of 37) were sensitized (p<0.05). Neither this rate, nor the magnitude of the sensitization (198 ± 63% of baseline) were different from that seen in cells not treated with NGF (3 of 25 cells sensitized (12.0%), 253 ± 70% of baseline). Pretreatment with the CB1 antagonist AM-251 (100 nM) prevented the effect of ACEA on NGF-induced sensitization. These results support the hypothesis that cannabinoids, acting through CB1 receptors, may produce analgesia in part by preventing NGF-induced sensitization of TRPV1 in afferent nociceptor nerve endings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752375PMC
http://dx.doi.org/10.1016/j.neulet.2013.06.066DOI Listing

Publication Analysis

Top Keywords

sensory neurons
8
capsaicin application
8
baseline current
8
trpv1
5
ngf
5
cb1 cannabinoid
4
cannabinoid receptor
4
receptor agonist
4
agonist prevents
4
prevents ngf-induced
4

Similar Publications

SIRT4 Protects Retina Against Excitotoxic Injury by Promoting OPA1-Mediated Müller Glial Cell Mitochondrial Fusion and GLAST Expression.

Invest Ophthalmol Vis Sci

January 2025

Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.

Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).

Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.

View Article and Find Full Text PDF

GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.

View Article and Find Full Text PDF

Background: To compare structural and vascular parameters between advanced pseudoexfoliation glaucoma (PXG) and primary open-angle glaucoma (POAG).

Methods: One hundred and six eyes of 81 patients were enrolled in this cross-sectional study. All patients underwent complete ophthalmic examination and measurement of the thickness of the peripapillary retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC).

View Article and Find Full Text PDF

Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear.

View Article and Find Full Text PDF

To protect the body from infections, the brain has evolved the ability to coordinate behavioral and immunological responses. The conditioned immune response (CIR) is a form of Pavlovian conditioning wherein a sensory (for example, taste) stimulus, when paired with an immunomodulatory agent, evokes aversive behavior and an anticipatory immune response after re-experiencing the taste. Although taste and its valence are represented in the anterior insular cortex and immune response in the posterior insula and although the insula is pivotal for CIRs, the precise circuitry underlying CIRs remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!