A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The formin Daam1 and fascin directly collaborate to promote filopodia formation. | LitMetric

AI Article Synopsis

  • Filopodia are slender extensions of cells that help with movement, sensing pathogens, and cell adhesion, containing organized bundles of actin filaments.
  • Research shows that the formin protein Daam1 localizes throughout the filopodial shaft and is essential for maintaining the structure and integrity of filopodia, alongside another bundling protein called fascin.
  • Daam1 and fascin interact directly, with fascin helping to recruit and stabilize Daam1 on the actin bundles, highlighting their important collaboration in filopodia formation.

Article Abstract

Filopodia are slender cellular protrusions that dynamically extend and retract to facilitate directional cell migration, pathogen sensing, and cell-cell adhesion. Each filopodium contains a rigid and organized bundle of parallel actin filaments, which are elongated at filopodial tips by formins and Ena/VASP proteins. However, relatively little is known about how the actin filaments in the filopodial shaft are spatially organized to form a bundle with appropriate dimensions and mechanical properties. Here, we report that the mammalian formin Daam1 (Disheveled-associated activator of morphogenesis 1) is a potent actin-bundling protein and localizes all along the filopodial shaft, which differs from other formins that localize specifically to the tips. Silencing of Daam1 led to severe defects in filopodial number, integrity, and architecture, similar to silencing of the bundling protein fascin. This led us to investigate the potential relationship between Daam1 and fascin. Fascin and Daam1 coimmunoprecipitated from cell extracts, and silencing of fascin led to a striking loss of Daam1 localization to filopodial shafts, but not tips. Furthermore, purified fascin bound directly to Daam1, and multicolor single-molecule TIRF imaging revealed that fascin recruited Daam1 to and stabilized Daam1 on actin bundles in vitro. Our results reveal an unanticipated and direct collaboration between Daam1 and fascin in bundling actin, which is required for proper filopodial formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748375PMC
http://dx.doi.org/10.1016/j.cub.2013.06.013DOI Listing

Publication Analysis

Top Keywords

daam1 fascin
12
daam1
9
formin daam1
8
fascin
8
actin filaments
8
filopodial shaft
8
fascin led
8
filopodial
6
fascin directly
4
directly collaborate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!