Fat deposition in dilated cardiomyopathy assessed by CMR.

JACC Cardiovasc Imaging

Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Peoples Republic of China.

Published: August 2013

Objectives: The aim of this study was to prospectively investigate the prevalence of fat deposition in idiopathic dilated cardiomyopathy (DCM) by fat-water separation imaging. An auxiliary aim was to determine the relationship between left ventricular (LV) fat deposition and characteristic myocardial fibrosis, as well as cardiac functional parameters.

Background: Idiopathic DCM remains the most common cause of heart failure in young people referred for cardiac transplantation; little is known about the clinical value of fat deposition in DCM.

Methods: A total of 124 patients with DCM were studied after written informed consent was obtained. The magnetic resonance imaging scan protocols included a series of short-axis LV cine imaging for functional analysis, fat-water separation imaging, and late gadolinium enhancement (LGE) imaging. Fat deposition and fibrosis location were compared to the scar regions on LGE images using a 17-segment model. Statistical comparisons of LV global functional parameters, fibrosis volumes, and fat deposition were carried out using the Pearson correlation, Student t test, and multiple regressions.

Results: The patients had a 41.9% (52 of 124) prevalence of positive LGE, and 12.9% (16 of 124) fat deposition prevalence was found in this DCM cohort. The patients with fat deposition had larger LV end-diastolic volume (LVEDV) index (140.8 ± 20.2 ml/m(2) vs. 123.4 ± 15.8 ml/m(2); p < 0.01), larger LV end-systolic volume (LVESV) index (111.3 ± 19.2 ml/m(2) vs. 87.0 ± 20.3 ml/m(2); p < 0.01), and decreased LV ejection fraction (LVEF) (21.1 ± 7.1% vs. 30.0 ± 10.7%; p < 0.01). Higher volumes of LGE were found in the group with myocardial fat deposition (18.39 ± 9.0 ml vs. 13.40 ± 6.54 ml; p = 0.001), as well as a higher percentage of LGE/LV mass (19.11 ± 7.78% vs. 13.60 ± 4.58%; p = 0.000). The volume of fat deposition was correlated with scar volume, LVEF, LVEDV index, and LVESV index.

Conclusions: Fat deposition is a common phenomenon in DCM, and it is associated with DCM characteristics such as fibrosis volume and LV function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcmg.2013.04.010DOI Listing

Publication Analysis

Top Keywords

fat deposition
44
fat
11
deposition
10
dilated cardiomyopathy
8
fat-water separation
8
separation imaging
8
ml/m2 001
8
dcm
6
imaging
5
volume
5

Similar Publications

The number of beef × dairy animals entering feedlots has increased, but the response of beef × dairy cattle to growth-promoting implants has not been well characterized. The objective of this study was to evaluate the effects of breed type and implant administration on live performance, carcass characteristics, sera metabolites, and immunohistochemical (IHC) outcomes. Forty-eight steers (average body weight [BW] = 417±22 kg) were sorted by breed into groups of predominantly Angus (B), black-hided beef × primarily Holstein (B×D), or Holstein (D), and half of the steers within each breed type were administered a steroidal implant.

View Article and Find Full Text PDF

Serum markers for beef meat quality: Potential media supplement for cell-cultured meat production.

Curr Res Food Sci

December 2024

Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea.

As the global population continues to grow and food demands increase, the food industry faces mounting pressure to develop innovative solutions. Cell-cultured meat involves cultivating cells from live animals through self-renewal methods or scaffolding and presents a promising alternative to traditional meat production by generating nutritionally rich biomass. However, significant research is still needed to overcome challenges such as developing serum-free media, identifying suitable additives to support cell growth, and ensuring the quality of cell-cultured meat closely resembles that of traditional meat.

View Article and Find Full Text PDF

Benzopyrene Aggravates Nonalcoholic Liver Fatty Diseases in Female Mice Via the AHR/ERα Axis.

Curr Mol Med

January 2025

Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.

Objective: Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver condition worldwide, and the statistics show that men have a higher incidence and prevalence than women, but its toxicological mechanism is not completely clear. This research is intended to explore the role of BaP in NAFLD and to study how the environmental pollutant BaP influences the AHR/ERα axis to mediate the progression of NAFLD.

Methods: In this study, we established NAFLD models in vivo and in vitro by treating HepG2 cells with a high-fat diet and Oleic acid (OA) in C57BL/6J mice.

View Article and Find Full Text PDF

Small molecule-driven LKB1 deacetylation is responsible for the inhibition of hepatic lipid response in NAFLD.

J Lipid Res

January 2025

Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China. Electronic address:

Nonalcoholic fatty liver disease (NAFLD) is a progressive condition characterized by ectopic fat accumulation in the liver, for which no FAD-approved drugs currently exist. Emerging evidence highlights the role of liver kinase B1 (LKB1), a key metabolic regulator, has been proposed in NAFLD, particularly in response to excessive nutrient levels. However, few agents have been identified that can prevent the progression of nonalcoholic steatohepatitis (NASH) by targeting LKB1 deacetylation.

View Article and Find Full Text PDF

Purpose: To investigate the impact of iron particle size on and fat fraction (FF) estimations for coexisting hepatic iron overload and steatosis condition using Monte Carlo simulations and phantoms.

Methods: Three iron particle sizes (0.38, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!