Mitigation of peroxidative stress for barley exposed to cadmium in the presence of water-extractable organic matter from compost-like materials.

Chemosphere

Laboratory of Chemical Resources, Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.

Published: October 2013

The effects of water-extractable organic matter (WEOM) from compost-like materials on peroxidative stress were investigated for hydroponic culture of barley exposed to Cd. In the presence of WEOM, lipoxygenase activity and malondialdehyde, indices of peroxidative stress in barley, were significantly reduced, compared to those with Cd alone (5 μM) for a 30-d culture (p<0.05). In addition, Cd uptake in the presence of WEOM samples was significantly lower than that in their absence (p<0.05). These results indicate that the addition of WEOM can be effective in mitigating the peroxidative stress in barley exposed to Cd. Of the total Cd in the solution, 7-8% was complexed with WEOM, indicating that the complexation of Cd with WEOM is a minor factor in reducing Cd-induced stress in barley. The WEOM sample was purified by cation-exchange column and ultrafiltration to remove the nutrient minerals, such as Ca, Mg and Fe. When the purified WEOM was employed for hydroponic culture in the presence of Cd, significant decreases in peroxidative stress and Cd uptake were observed (p<0.05). These results show that the organic components in WEOM contribute to the mitigation of peroxidative stress in barley exposed to Cd.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2013.06.038DOI Listing

Publication Analysis

Top Keywords

peroxidative stress
12
stress barley
8
barley exposed
8
water-extractable organic
8
organic matter
8
compost-like materials
8
mitigation peroxidative
4
exposed cadmium
4
cadmium presence
4
presence water-extractable
4

Similar Publications

Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi mitigate cadmium stress in maize.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, and College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:

Soil cadmium (Cd) pollution poses a significant environmental threat, impacting global food security and human health. Recent studies have highlighted the potential of arbuscular mycorrhizal (AM) fungi to protect crops from various heavy metal stresses, including Cd toxicity. To elucidate the tolerance mechanisms of maize in response to Cd toxicity under AM symbiosis, this study used two maize genotypes with contrasting Cd tolerance: Zhengdan958 (Cd-tolerant) and Zhongke11 (Cd-sensitive).

View Article and Find Full Text PDF

Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.

View Article and Find Full Text PDF

Background: The imbalance between Egypt's water requirements and supply necessitates the use of unconventional water sources, such as treated sewage water (TSW) and agricultural drainage water (ADW), to combat water scarcity. This study investigated the effects of foliar glycine betaine (GB) on vegetative growth parameters, physiological characteristics, photosynthetic pigments, leaf element contents, anatomical leaf structures, and antioxidant activity. The experiment was conducted in two successive seasons (2021/2022 and 2022/2023) using Kapok seedlings irrigated with ADW and TSW at different mixing ratios with normal irrigation water (NIW) (25%, 50%, 75%, and 100%), combined with foliar spraying of GB at concentrations of 0.

View Article and Find Full Text PDF

The function of SnRK1 in regulating darkness-induced leaf senescence in cucumber.

Plant Physiol Biochem

December 2024

College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China. Electronic address:

SnRK1 (SNF1-related kinase 1), a member of the SNF1 protein kinase superfamily, has been demonstrated to play a role in plant growth and development, as well as in stress responses. In this experiment, the leaf senescence of 'Xintaimici' cucumber was simulated by dark treatment and studied using SnRK1 activator/inhibitor and transient transformation technology. The effects of SnRK1 on cucumber leaf senescence, reactive oxygen species (ROS) metabolism, chloroplast structure, and photosynthetic characteristics were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!