AI Article Synopsis

  • The study investigates how the cytotoxic protein Aβ(25-35) affects inflammatory markers and heat shock proteins in rat C6 astrocyte cells.
  • Treatment with Aβ(25-35) significantly increased levels of IL-1β, TNF-α, and nitrite after three days, indicating an inflammatory response.
  • Hsp-70 expression peaked at three days but subsequently dropped, while Hsp-60 and Hsp-90 expressions continued to rise, suggesting a complex relationship between these proteins and cell death during Aβ(25-35) exposure.

Article Abstract

Two hallmarks of Alzheimer diseases are the continuous inflammatory process, and the brain deposit of Amyloid b (Aβ), a cytotoxic protein. The intracellular accumulation of Aβ(25-35) fractions, in the absence of Heat Shock proteins (Hsṕs), could be responsible for its cytotoxic activity. As, pro-inflammatory mediators and nitric oxide control the expression of Hsṕs, our aim was to investigate the effect of Aβ(25-35) on the concentration of IL-1β, TNF-α and nitrite levels, and their relation to pHSF-1, Hsp-60, -70 and -90 expressions, in the rat C6 astrocyte cells. Interleukin-specific ELISA kits, immunohistochemistry with monoclonal anti-Hsp and anti pHSF-1 antibodies, and histochemistry techniques, were used. Our results showed that Aβ25-35 treatment of C6 cells increased, significantly and consistently the concentration of IL-1β, TNF-α and nitrite 3 days after initiating treatment. The immunoreactivity of C6 cells to Hsp-70 reached its peak after 3 days of treatment followed by an abrupt decrease, as opposed to Hsp-60 and -90 expressions that showed an initial and progressive increase after 3 days of Aβ(25-35) treatment. pHSF-1 was identified throughout the experimental period. Nevertheless, progressive and sustained cell death was observed during all the treatment times and it was not caspase-3 dependent. Our results suggest that Hsp-70 temporary expression serves as a trigger to inhibit casapase-3 pathway and allow the expression of Hsp-60 and -90 in C6 astrocytoma cells stimulated with Aβ(25-35).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.npep.2013.06.002DOI Listing

Publication Analysis

Top Keywords

astrocytoma cells
8
concentration il-1β
8
il-1β tnf-α
8
tnf-α nitrite
8
-90 expressions
8
aβ25-35 treatment
8
hsp-60 -90
8
cells
5
aβ25-35
5
treatment
5

Similar Publications

Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor.

View Article and Find Full Text PDF

This study aimed to investigate β-Caryophyllene (BCA) pharmacokinetics as well as the potential antitumor activity and mechanism of action of BCA and eugenol (EU), alone or in combination, in U87 glioblastoma (GB) cells. The BCA pharmacokinetic was studied by evaluating its concentration profiles in rat blood and cerebrospinal fluid after oral and intravenous administration. EU and BCA antitumor mechanisms were assessed by comparing their effects in U87 GB cells and non-tumoral HMC3 cells.

View Article and Find Full Text PDF

Glioblastoma (GB) is one of the most aggressive and treatment-resistant cancers due to its complex tumor microenvironment (TME). We previously showed that GB progression is dependent on the aberrant induction of chaperone-mediated autophagy (CMA) in pericytes (PCs), which promotes TME immunosuppression through the PC secretome. The secretion of extracellular matrix (ECM) proteins with anti-tumor (Lumican) and pro-tumoral (Osteopontin, OPN) properties was shown to be dependent on the regulation of GB-induced CMA in PCs.

View Article and Find Full Text PDF

Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment involves chemotherapy and/or radiotherapy; however, there is currently no standard treatment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the communication with the cells of the tumour parenchyma, including microglia/macrophages, and maintaining an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Effect of SNORD113-3/ADAR2 on glycolipid metabolism in glioblastoma via A-to-I editing of PHKA2.

Cell Mol Biol Lett

January 2025

Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China.

Background: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor, characterized by its poor prognosis. Glycolipid metabolism is strongly associated with GBM development and malignant behavior. However, the precise functions of snoRNAs and ADARs in glycolipid metabolism within GBM cells remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!