Concentrations of heavy metals (Cd, Pb, Cu, Zn, and Ni) were measured in the foodstuffs, house dust, underground/drinking water, and soil from an electronic waste (e-waste) area in South China. Elevated concentrations of these potentially toxic metals were observed in the samples but not in drinking water. The health risks for metal exposure via food consumption, dust ingestion, and drinking water were evaluated for local residents. For the average residents in the e-waste area, the non-carcinogenic risks arise predominantly from rice (hazard index=3.3), vegetables (2.2), and house dust (1.9) for adults, while the risks for young children are dominated by house dust (15). Drinking water may provide a negligible contribution to risk. However, local residents who use groundwater as a water supply source are at high non-carcinogenic risk. The potential cancer risks from oral intake of Pb are 8×10(-5) and 3×10(-4) for average adults and children, and thus groundwater would have a great potential to induce cancer (5×10(-4) and 1×10(-3)) in a highly exposed population. The results also reveal that the risk from oral exposure is much higher than the risk from inhalation and dermal contact with house dust.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2013.06.017DOI Listing

Publication Analysis

Top Keywords

house dust
20
drinking water
12
heavy metals
8
area south
8
south china
8
e-waste area
8
local residents
8
dust
6
water
6
house
5

Similar Publications

Utilizing Martian samples for future planetary exploration-Characterizing hazards and resources.

Proc Natl Acad Sci U S A

January 2025

Division of Space, Ecological, Arctic, and Resource-limited (SPEAR) Medicine, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA 02114.

One of the most surprising and important findings of the first human landings on the Moon was the discovery of a very fine layer of lunar dust covering the entire surface of Moon along with the negative impacts of this dust on the well-being and operational effectiveness of the astronauts, their equipment, and instrumentation. The United States is now planning for human missions to Mars, a planet where dust can also be expected to be ubiquitous for many or most landing sites. For these missions, the design and operations of key hardware systems must take this dust into account, especially when related to crew health and safety.

View Article and Find Full Text PDF

The NASA Mars 2020 Perseverance Rover Mission has collected samples of rock, regolith, and atmosphere within the Noachian-aged Jezero Crater, once the site of a delta-lake system with a high potential for habitability and biosignature preservation. Between sols 109 and 1,088 of the mission, 27 sample tubes have been sealed, including witness tubes. Each sealed sample tube has been collected along with detailed documentation provided by the Perseverance instrument payload, preserving geological and environmental context.

View Article and Find Full Text PDF

This study aimed to test the use of Rietveld refinement on respirable aerosol samples to determine the phase of respirable crystalline silica (RCS) and other minerals. The results from the Rietveld refinement were compared to an external standard method and gravimetrical measurements. Laboratory samples consisting of α-quartz, feldspar, and calcite with variable proportions and total mass loadings were made and analyzed using the NIOSH 7500 , followed by Rietveld refinement.

View Article and Find Full Text PDF

Pneumoconiosis, caused by inhaling mineral dust, remains a significant occupational disease, despite a declining incidence. Coal workers' pneumoconiosis (CWP), a common subtype, varies in presentation from simple to complicated forms. Differential diagnosis is crucial, especially when CWP manifests as lung masses mimicking malignancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!