Comparative proteomic analysis of off-type and normal phenotype somatic plantlets derived from somatic embryos of Feijoa (Acca sellowiana (O. Berg) Burret).

Plant Sci

Graduate Program in Plant Genetic Resources, Plant Developmental Physiology and Genetics Laboratory, Federal University of Santa Catarina, Rodovia Admar Gonzaga, 1346, ZC: 88040-900 Florianópolis, Santa Catarina, Brazil.

Published: September 2013

Morphological disorders in a relevant portion of emerged somatic embryos have been a limiting factor in the true-to-type plantlet formation in Acca sellowiana. In this sense, the present study undertook a comparison between normal phenotype and off-type somatic plantlets protein profiles by means of the 2-D DIGE proteomics approach. Off-type and normal phenotype somatic plantlets obtained at 10 and 20 days conversion were evaluated. Results indicated 12 exclusive spots between normal and off-type plantlets at 10 days conversion, and 17 exclusive spots at 20 days conversion. Also at 20 days conversion, 4 spots were differentially expressed, up- or down-regulated. Two proteins related to carbohydrate metabolism were only expressed in off-types at 10 days conversion, suggesting a more active respiratory pathway. A vicilin-like storage protein was only found in off-types at 20 days conversion, indicating that plantlets may present an abnormality in the mobilization of storage compounds, causing reduced vigor in the development of derived plantlets. The presence of heat shock proteins were only observed during formation of normal phenotype somatic plantlets, indicating that these proteins may be involved in normal morphogenesis of plantlets formed. These new findings shed light on possible genetic or epigenetic mechanisms governing A. sellowiana morphogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2013.06.006DOI Listing

Publication Analysis

Top Keywords

days conversion
24
normal phenotype
16
somatic plantlets
16
phenotype somatic
12
off-type normal
8
plantlets
8
somatic embryos
8
acca sellowiana
8
plantlets days
8
exclusive spots
8

Similar Publications

Engineered sulfonated porous carbon/cellulose nanofiber hybrid membrane for high-efficiency osmotic energy conversion applications.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations.

View Article and Find Full Text PDF

Effect of marine anoxia on the conversion of macroalgal biomass to refractory dissolved organic carbon.

Mar Environ Res

January 2025

Marine Carbon Sink Research Center, Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China; College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China.

The input of macroalgal biomass into the deep sea is a crucial process for macroalgal carbon sequestration, but this process may be affected by anoxia. We compared the breakdown of kelp biomass in both normoxic (>4 mg/L O) and anoxic (<2 mg/L O) environments. Following 240 days of decomposition experiment, complete degradation of the kelp biomass occurred in normoxic conditions, whereas under anoxic conditions, relatively 13.

View Article and Find Full Text PDF

White rot fungi can degrade lignin and improve the nutritional value of highly lignified biomass for ruminants. We screened for excellent fungi-biomass combinations by investigating the improvement of digestibility of wheat straw, barley straw, oat straw, rapeseed straw, miscanthus, new reed, spent reed from thatched roofs, and cocoa shells after colonisation by Ceriporiopsis subvermispora (CS), Lentinula edodes (LE), and Pleurotus eryngii (PE) (indicated by increased in vitro gas production [IVGP]). First, growth was evaluated for three fungi on all types of biomass, over a period of 17 days in race tubes.

View Article and Find Full Text PDF

Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits.

View Article and Find Full Text PDF

A Cytosolic Phosphoglucose Isomerase, OsPGI1c, Enhances Plant Growth and Herbivore Resistance in Rice.

Int J Mol Sci

December 2024

State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.

Glucose-6-phosphate isomerase (PGI), a key enzyme that catalyzes the reversible conversion of glucose-6-phosphate and fructose-6-phosphate, plays an important role in plant growth, development, and responses to abiotic stresses and pathogen infections. However, whether and how PGI modulates herbivore-induced plant defenses remain largely unknown. The Brown planthopper (BPH, ) is a devastating insect pest of rice, causing significant damage to rice plants through feeding, oviposition, and disease transmission, resulting in great yield losses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!