Background And Purpose: The homeostatic control of arterial BP is well understood with changes in BP resulting from changes in cardiac output (CO) and/or total peripheral resistance (TPR). A mechanism-based and quantitative analysis of drug effects on this interrelationship could provide a basis for the prediction of drug effects on BP. Hence, we aimed to develop a mechanism-based pharmacokinetic-pharmacodynamic (PKPD) model in rats that could be used to characterize the effects of cardiovascular drugs with different mechanisms of action (MoA) on the interrelationship between BP, CO and TPR.
Experimental Approach: The cardiovascular effects of six drugs with diverse MoA, (amlodipine, fasudil, enalapril, propranolol, hydrochlorothiazide and prazosin) were characterized in spontaneously hypertensive rats. The rats were chronically instrumented with ascending aortic flow probes and/or aortic catheters/radiotransmitters for continuous recording of CO and/or BP. Data were analysed in conjunction with independent information on the time course of drug concentration using a mechanism-based PKPD modelling approach.
Key Results: By simultaneous analysis of the effects of six different compounds, the dynamics of the interrelationship between BP, CO and TPR were quantified. System-specific parameters could be distinguished from drug-specific parameters indicating that the model developed is drug-independent.
Conclusions And Implications: A system-specific model characterizing the interrelationship between BP, CO and TPR was obtained, which can be used to quantify and predict the cardiovascular effects of a drug and to elucidate the MoA for novel compounds. Ultimately, the proposed PKPD model could be used to predict the effects of a particular drug on BP in humans based on preclinical data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724108 | PMC |
http://dx.doi.org/10.1111/bph.12190 | DOI Listing |
Antimicrob Agents Chemother
January 2025
Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China.
Eravacycline is a broad-spectrum fluorocycline currently approved for complicated intra-abdominal infections (cIAIs). In lung-infection models, it is effective against methicillin-resistant (MRSA) and tetracycline-resistant MRSA. As such, we aimed to develop a population pharmacokinetic/pharmacodynamic (PK/PD) model to evaluate eravacycline's pulmonary distribution and kinetics.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development, Uppsala University, SE-75124 Uppsala, Sweden.
: N-acetyl-galactosamine small interfering RNAs (GalNAc-siRNA) are an emerging class of drugs due to their durable knockdown of disease-related proteins. Direct conjugation of GalNAc onto the siRNA enables targeted uptake into hepatocytes via GalNAc recognition of the Asialoglycoprotein Receptor (ASGPR). With a transient plasma exposure combined with a prolonged liver half-life, GalNAc-siRNA exhibits distinct disposition characteristics.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Pharmacy, Shimane University Hospital, 89-1 Enya, Izumo 693-8501, Shimane, Japan.
Antimicrobial resistance (AMR) poses a critical global health threat, necessitating the optimal use of existing antibiotics. Pharmacokinetic/pharmacodynamic (PK/PD) principles provide a scientific framework for optimizing antimicrobial therapy, particularly to respond to evolving resistance patterns. This review examines PK/PD strategies for antimicrobial dosing optimization, focusing on three key aspects.
View Article and Find Full Text PDFBackground: Antibody-drug conjugate (ADC) is an anticancer drug that links toxins to specifically targeted antibodies via linkers, offering the advantages of high target specificity and high cytotoxicity. However, complexity of its structural composition poses a greater difficulty for drug design studies.
Objectives: Pharmacokinetic/pharmacodynamic (PK/PD) based consideration of ADCs has increasingly become a hot research topic for optimal drug design in recent years, providing possible ideas for obtaining ADCs with desirable properties.
Background: Uncertainty about optimal tranexamic acid (TXA) dosage has led to significant practice variation in hip arthroplasty. We aimed to identify the optimal i.v.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!