In inhomogeneously strained graphene, low-energy electrons experience a valley-antisymmetric pseudomagnetic field which leads to the formation of localized states at the edge between the valence and conduction bands, understood in terms of peculiar n=0 pseudomagnetic Landau levels. Here we show that such states can manifest themselves as an isolated quadruplet of low-energy conductance resonances in a suspended stretched graphene ribbon, where clamping by the metallic contacts results in a strong inhomogeneity of strain near the ribbon ends.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.110.266801 | DOI Listing |
Phys Rev Lett
December 2024
Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
Phys Rev Lett
December 2024
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
Nanobubbles wield a significant influence over the electronic properties of 2D materials, showing diverse applications ranging from flexible devices to strain sensors. Here, we reveal that a strongly correlated phenomenon, i.e.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, Hong Kong, China.
The ability to generate Landau levels using a pseudomagnetic field (PMF), also called an artificial gauge field, opens up new pathways for exploring fundamental physics and developing novel applications based on topological protection. In this Letter, we simultaneously realize a PMF and a pseudoelectric field (PEF) on a photonic crystal platform and observe a rainbow effect of the Landau zeroth modes. While a PMF induces a series of discretized Landau levels of photons in a similar way as the quantum Hall effect for electrons, a PEF breaks the degeneracy of the flat band of Landau levels over a broad range.
View Article and Find Full Text PDFNano Lett
January 2025
Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
Strain superlattices (SL) in 2D materials like graphene provide an ideal test bed for generating flat bands and exploring the effects of strong correlations. Here we report STM/STS measurements on an engineered SL generated by placing graphene on a periodic array of silica nanospheres. A pseudomagnetic field as high as 55 T is observed along with the formation of pseudo-Landau levels (pLLs), not only at the expected integer values but also at fractional values.
View Article and Find Full Text PDFNanophotonics
August 2024
School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
The metamaterial with artificial synthetic gauge field has been proved as an excellent platform to manipulate the transport of the electromagnetic wave. Here we propose an inhomogeneous spoof surface plasmonic metasurface to construct an in-plane pseudo-magnetic field, which is generated by engineering the gradient variation of the opened Dirac cone corresponding to spatially varying mass term. The chiral zeroth-order Landau level is induced by the strong pseudo-magnetic field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!