A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-trapping transition in nonlinear cubic lattices. | LitMetric

Self-trapping transition in nonlinear cubic lattices.

Phys Rev E Stat Nonlin Soft Matter Phys

Departamento de Física, MSI-Nucleus on Advanced Optics, and Center for Optics and Photonics, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.

Published: June 2013

We explore the fundamental question of the critical nonlinearity value needed to dynamically localize energy in discrete nonlinear cubic (Kerr) lattices. We focus on the effective frequency and participation ratio of the profile to determine the transition into localization in one-, two-, and three-dimensional lattices. A simple and general criterion is developed, for the case of an initially localized excitation, to define the transition region in parameter space ("dynamical tongue") from a delocalized to a localized profile. We introduce a method for computing the dynamically excited frequencies, which helps us validate our stationary ansatz approach and the effective frequency concept. A general analytical estimate of the critical nonlinearity is obtained, with an extra parameter to be determined. We find this parameter to be almost constant for two-dimensional systems and prove its validity by applying it successfully to two-dimensional binary lattices.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.87.062914DOI Listing

Publication Analysis

Top Keywords

nonlinear cubic
8
critical nonlinearity
8
effective frequency
8
self-trapping transition
4
transition nonlinear
4
lattices
4
cubic lattices
4
lattices explore
4
explore fundamental
4
fundamental question
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!