Protein sequence evolution has resulted in a vast repertoire of molecular functionality crucial to life. Despite the central importance of sequence evolution to biology, our fundamental understanding of how sequence composition affects evolution is incomplete. This report describes the utilization of lattice model simulations of directed evolution, which indicate that, on average, peptide and protein evolvability is strongly dependent on initial sequence composition. The report also discusses two distinct regimes of sequence evolution by point mutation: (a) the "classical" mode where sequences "crawl" over free energy barriers towards acquiring a target fold, and (b) the "quantum" mode where sequences appear to "tunnel" through large energy barriers generally insurmountable by means of a crawl. Finally, the simulations indicate that oily and charged peptides are the most efficient substrates for evolution at the "classical" and "quantum" regimes, respectively, and that their respective response to temperature is commensurate with analogies made to barrier crossing in classical and quantum systems. On the whole, these results show that sequence composition can tune both the evolvability and the optimal mode of evolution of peptides and proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.87.062714 | DOI Listing |
Sci Rep
January 2025
Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St, 02-786, Warsaw, Poland.
Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.
View Article and Find Full Text PDFSci Rep
January 2025
Information Institute of the Ministry of Emergency Management of PR China, Beijing, 100029, People's Republic of China.
Slopes influenced by multiple faults are prone to large-scale landslides triggered by multi-regional failures. Understanding the failure process and sequence is essential for the sustainable development of mining operations. This paper presents a method combining InSAR monitoring and numerical simulation to analyze the failure processes of slopes affected by multiple faults.
View Article and Find Full Text PDFRegulation of gene expression helps determine various phenotypes in most cellular life forms. It is orchestrated at different levels and at the point of transcription initiation by transcription factors (TFs). TFs bind to DNA through domains that are evolutionarily related, by shared membership of the same superfamilies (TF-SFs), to those found in other nucleic acid binding and protein-binding functions (nTFs for non-TFs).
View Article and Find Full Text PDFJ Biol Chem
January 2025
Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada. Electronic address:
Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the efficiency at the ideal level of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations.
View Article and Find Full Text PDFPoult Sci
January 2025
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China. Electronic address:
H7N9 avian influenza virus (AIV) first emerged in February 2013 in China, and early isolates were all low pathogenic (LP). After circulation for a few years in live poultry markets of China, LP H7N9 AIVs evolved into a highly pathogenic (HP) form in late 2016. Deduced amino acid sequence analysis of hemagglutinin (HA) gene revealed that all HP H7N9 AIVs have obtained four-amino-acid insertion at position 339-342 (H7 numbering), making the cleavage site from a monobasic motif (LP AIVs) to a polybasic form (HP AIVs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!