Nonuniversal disordered Glauber dynamics.

Phys Rev E Stat Nonlin Soft Matter Phys

Departamento de Física, Universidad Nacional de La Plata, 1900 La Plata, Argentina.

Published: June 2013

We consider the one-dimensional Glauber dynamics with coupling disorder in terms of bilinear fermion Hamiltonians. Dynamic exponents embodied in the spectrum gap of these latter are evaluated numerically by averaging over both binary and Gaussian disorder realizations. In the first case, these exponents are found to follow the nonuniversal values of those of plain dimerized chains. In the second situation their values are still nonuniversal and subdiffusive below a critical variance above which, however, the relaxation time is suggested to grow as a stretched exponential of the equilibrium correlation length.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.87.062102DOI Listing

Publication Analysis

Top Keywords

glauber dynamics
8
nonuniversal disordered
4
disordered glauber
4
dynamics consider
4
consider one-dimensional
4
one-dimensional glauber
4
dynamics coupling
4
coupling disorder
4
disorder terms
4
terms bilinear
4

Similar Publications

We investigate the dynamical phases and phase transitions arising in a classical two-dimensional anisotropic XY model under the influence of a periodically driven temporal external magnetic field in the form of a symmetric square wave. We use a combination of finite temperature classical Monte Carlo simulation, implemented within a CPU+GPU paradigm, utilizing local dynamics provided by the Glauber algorithm and a phenomenological equation-of-motion approach based on relaxational dynamics governed by the time-dependent free energy within a mean-field approximation to study the model. We investigate several parameter regimes of the variables (magnetic field, anisotropy, and the external drive frequency) that influence the anisotropic XY system.

View Article and Find Full Text PDF

Metastable states in the Ising model with Glauber-Kawasaki competing dynamics.

Phys Rev E

August 2024

Instituto de Física-Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso, Brazil.

Metastable states are identified in the Ising model with competition between the Glauber and Kawasaki dynamics. The model of interaction between magnetic moments was implemented on a network where the degree distribution follows a power law of the form P(k)∼k^{-α}. The evolution toward the stationary state occurred through the competition between two dynamics, driving the system out of equilibrium.

View Article and Find Full Text PDF
Article Synopsis
  • * To create effective catalysts, understanding the structure, composition, and morphology influence on NRR activity is crucial, prompting the use of metal-organic chemical vapor deposition (MOCVD) for precise catalyst nanoengineering.
  • * The study reports successful fabrication of oriented ZrN thin films on various substrates, with simulations and experimental tests indicating potential for NRR activity, especially in sulfuric acid electrolyte.
View Article and Find Full Text PDF

Nonequilibrium generation of charge defects in kagome spin ice under slow cooling.

Phys Rev E

May 2024

Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA.

Kagome spin ice is one of the canonical examples of highly frustrated magnets. The effective magnetic degrees of freedom in kagome spin ice are Ising spins residing on a two-dimensional network of corner-sharing triangles. Due to strong geometrical frustration, nearest-neighbor antiferromagnetic interactions on the kagome lattice give rise to a macroscopic number of degenerate classical ground states characterized by ice rules.

View Article and Find Full Text PDF

We consider a one-dimensional classical ferromagnetic Ising model when it is quenched from a low temperature to zero temperature in finite time using Glauber or Kawasaki dynamics. Most of the previous work on finite-time quenches assume that the system is initially in equilibrium and focuses on the excess mean defect density at the end of the quench, which decays algebraically in quench time with Kibble-Zurek exponent. Here we are interested in understanding the conditions under which the Kibble-Zurek scalings do not hold and in elucidating the full dynamics of the mean defect density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!