Controlled generation of uniform spherical LaMnO3, LaCoO3, Mn2O3, and Co3O4 nanoparticles and their high catalytic performance for carbon monoxide and toluene oxidation.

Inorg Chem

Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China.

Published: August 2013

Uniform hollow spherical rhombohedral LaMO3 and solid spherical cubic MOx (M = Mn and Co) NPs were fabricated using the PMMA-templating strategy. Hollow spherical LaMO3 and solid spherical MOx NPs possessed surface areas of 21-33 and 21-24 m(2)/g, respectively. There were larger amounts of surface-adsorbed oxygen species and better low-temperature reducibility on/of the hollow spherical LaMO3 samples than on/of the solid spherical MOx samples. Hollow spherical LaMO3 and solid spherical MOx samples outperformed their nanosized counterparts for oxidation of CO and toluene, with the best catalytic activity being achieved over the solid spherical Co3O4 sample for CO oxidation (T50% = 81 °C and T90% = 109 °C) at space velocity = 10,000 mL/(g h) and the hollow spherical LaCoO3 sample for toluene oxidation (T50% = 220 °C and T90% = 237 °C) at space velocity = 20,000 mL/(g h). It is concluded that the higher surface areas and oxygen adspecies concentrations and better low-temperature reducibility are responsible for the excellent catalytic performance of the hollow spherical LaCoO3 and solid spherical Co3O4 NPs. We believe that the PMMA-templating strategy provides an effective route to prepare uniform perovskite-type oxide and transition-metal oxide NPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic400832hDOI Listing

Publication Analysis

Top Keywords

hollow spherical
24
solid spherical
24
spherical
13
lamo3 solid
12
spherical lamo3
12
spherical mox
12
catalytic performance
8
toluene oxidation
8
mox nps
8
pmma-templating strategy
8

Similar Publications

Direct analysis of engineered iron nanotubes and platinum nanorods: A challenge for single particle inductively coupled plasma mass spectrometry.

Talanta

January 2025

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011, Oviedo, Spain. Electronic address:

The use of inductively coupled plasma mass spectrometry in single particle mode (SP-ICP-MS) for the characterization of micro and nanostructured materials is a growing field of research. In this work, the possibility of expanding the boundaries to anisotropic structures including solid Pt-nanorods and hollowed FeO-nanotubes is presented. The obtained structures are evaluated by scanning electron microscopy (SEM), high-resolution electron microscopy (HR-TEM) and SP-ICP-MS techniques.

View Article and Find Full Text PDF

Fabrication and saltiness enhancement of salt hollow particles by interface migration.

Food Res Int

February 2025

National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

The morbidity of the chronic diseases such as the hypertension and cardiovascular diseases has been increasing in recent decades. The unhealthy diet with excessive salt intake is one of the proegumenal causes. In this research, spherical hollow salt particles with high specific surface area and durable ginger flavor were prepared as a seasoning powder for salt reduction and saltiness enhancement in solid foods.

View Article and Find Full Text PDF

In this study, hollow micron zero-valent iron (H-mZVI) was prepared using the ethylenediamine liquid phase reduction method. The microstructures were characterized by SEM, XRD, BET and FTIR. The results showed that H-mZVI possessed a spherical hollow structure with a particle size of approximately 1 μm.

View Article and Find Full Text PDF

Crafting Hollow Spheres via Bulk Ice Melting with ppb-Level Gas Sensing Performance.

J Am Chem Soc

January 2025

National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

Ice melting, a common yet complex phenomenon, remains incompletely understood. While theoretical studies suggest that preexisting defects in ice generate "off-lattice" water molecules, triggering bulk ice melting, direct experimental evidence of their form has been lacking as the transparent and transient nature of ice poses significant challenges for observation with current techniques. Here, we introduce an ice-melting-induced lyophilization (IMIL) technique that employs graphene-based nanoprobes to replicate and track liquid evolution within melting bulk ice.

View Article and Find Full Text PDF

Collagen nanoparticles (collagen-NPs) possess numerous applications owing to their minimal immunogenicity, non-toxic nature, excellent biodegradability and biocompatibility. This study presents a novel sustainable technique for one-step green synthesis of hydrolyzed fish collagen-NPs (HFC-NPs) using a hot-water extract of Ulva fasciata biomass. HFC-NPs were characterized using TEM, FTIR, XRD, ζ-potential analyses, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!