We previously reported that Hibiscus sabdariffa polyphenol extracts (HPE) are beneficial for diabetic nephropathy. Since an epithelial to mesenchymal transition (EMT) is critical in renal fibrosis, the present study aimed to investigate whether HPE could prevent EMT of tubular cells. Treatment of HPE reduced angiotensin II receptors (AT)-1 and transforming growth factor β1 (TGF-β1) evoked by high glucose and recovered the increased vimentin and decreased E-cadherin. HPE decreased fibronectin, thus avoiding EMT and accompanying fibrosis. AT-1 was upstream to TGF-β1, while there were recruitment signals between AT-1 and TGF-β1. Scan electron microscopy (SEM) and immunohistochemistry (IHC) revealed that the interacting filaments of tubular cells disappeared when treated with high glucose, and type IV collagen of tubulointerstitial decreased in diabetic kidneys. Treatment of HPE recovered morphological changes of cell junction and basement membrane. We suggest that HPE has the potential to be an adjuvant for diabetic nephropathy by regulating AT-1/TGF-β1 and EMT.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf4020735DOI Listing

Publication Analysis

Top Keywords

diabetic nephropathy
12
hibiscus sabdariffa
8
epithelial mesenchymal
8
mesenchymal transition
8
tubular cells
8
treatment hpe
8
high glucose
8
hpe
6
polyphenols hibiscus
4
sabdariffa improved
4

Similar Publications

Background: The estimation of glomerular filtration rate (eGFR) is essential in the early detection of diabetic nephropathy. We herein compare the performance of common eGFR formulas against a gold standard measurement of GFR in patients with diabetes mellitus.

Methods: GFR was measured in 93 patients with diabetes mellitus using iohexol clearance as the reference standard.

View Article and Find Full Text PDF

Do SGLT2 Inhibitors Protect the Kidneys? An Alternative Explanation.

Endocr Metab Immune Disord Drug Targets

January 2025

Sheba Medical Center, Institute of Endocrinology, Tel-Hashomer, Israel.

SGLT2 inhibitors are a family of drugs that were developed to treat diabetes mellitus. In randomized controlled trials, SGLT2 inhibitors seem to prevent kidney deterioration in patients with nephropathies, both diabetic and non-diabetic. However, in contrast to biochemical/physiological results (proteinuria and serum creatinine levels) that improve in all studies, the clinical results (all-cause mortality, cardiovascular death, need for dialysis, or renal transplant) do not consistently improve.

View Article and Find Full Text PDF

LOX-induced tubulointerstitial fibrosis via the TGF-β/LOX/Snail axis in diabetic mice.

J Transl Med

January 2025

Department of Basic Medical Sciences, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.

Background: The partial epithelial-mesenchymal transition (EMT) is emerging as a significant mechanism in diabetic nephropathy (DN). LOX is a copper amine oxidase conventionally thought to act by crosslinking collagen. However, the role of LOX in partial EMT and fibrotic progression in diabetic nephropathy has not been investigated experimentally.

View Article and Find Full Text PDF

High glucose induces renal tubular epithelial cell senescence by inhibiting autophagic flux.

Hum Cell

January 2025

Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.

Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.

View Article and Find Full Text PDF

Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!