Legionnaires' disease is an emerging, severe, pneumonia-like illness caused by the Gram-negative intracellular bacteria Legionella pneumophila, which are able to infect and replicate intracellularly in macrophages. Little is known regarding the mechanisms used by intracellular L. pneumophila for the acquisition of specific nutrients that are essential for bacterial replication. Here, we investigate three L. pneumophila genes with high similarity to the Escherichia coli K(+) transporters. These three genes were expressed by L. pneumophila and have been designated kupA, kupB and kupC. Investigation using the L. pneumophila kup mutants revealed that kupA is involved in K(+) acquisition during axenic growth. The kupA mutants replicated efficiently in rich axenic media, but poorly in a chemically defined medium. The kupA mutants were defective in the recruitment of polyubiquitinated proteins to the Legionella-containing vacuole that is formed in macrophages and displayed an intracellular multiplication defect during the replication in Acanthamoeba castellanii and in mouse macrophages. We found that bafilomycin treatment of macrophages was able to rescue the growth defects of kupA mutants, but itdid not influence the replication of wild-type bacteria. The defects identified in kupA mutants of L. pneumophila were complemented by the expression E. coli trkD/Kup gene in trans, a bona fide K(+) transporter encoded by E. coli. Collectively, our data indicate that KupA is a functional K(+) transporter expressed by L. pneumophila that facilitates the bacterial replication intracellularly and in nutrient-limited conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839304 | PMC |
http://dx.doi.org/10.1111/cmi.12168 | DOI Listing |
Environ Microbiol Rep
April 2017
Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, RJ, Brazil.
Microorganisms are constantly challenged by stressful conditions, such as sugar-rich environments. Such environments can cause an imbalance of biochemical activities and compromise cell multiplication. Gluconacetobacter diazotrophicus PAl 5 is among the most sugar-tolerant bacteria, capable of growing in the presence of up to 876 mM sucrose.
View Article and Find Full Text PDFCell Microbiol
December 2013
Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, FMRP/USP, Ribeirão Preto, SP, 14049-900, Brazil.
Legionnaires' disease is an emerging, severe, pneumonia-like illness caused by the Gram-negative intracellular bacteria Legionella pneumophila, which are able to infect and replicate intracellularly in macrophages. Little is known regarding the mechanisms used by intracellular L. pneumophila for the acquisition of specific nutrients that are essential for bacterial replication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!