One of the challenges in creating high-performance polymer nanocomposites is establishing effective routes for tailoring the morphology of both the polymer mixture and the dispersed nanoparticles, which contribute desirable optical, electrical, and mechanical properties. Using computational modeling, we devise an effective method for simultaneously controlling the spatial regularity of the polymer phases and the distribution of the rods within this matrix. We focus on mixtures of photosensitive AB binary blends and A-coated nanorods; in the presence of light, the binary blends undergo a reversible chemical reaction and phase separation to yield a morphology resembling that of microphase-separated diblock copolymers. We simulate the effects of illuminating this sample with a uniform background light and a higher intensity, spatially localized light, which is rastered over the sample with a velocity v. The resulting material displays a periodically ordered, essentially defect-free morphology, with the A-like nanoparticles localized in lamellar A domains. The dynamic behavior of the rods within this system can be controlled by varying the velocity v and Γ2, the reaction rate coefficient produced by the higher intensity light. Specifically, the rastering light can drive the rods to be "pushed" along the lamellar domains or oriented perpendicular to these stripes. Given these attributes, we isolate scenarios where the system encompasses a complex hierarchical structure, with rods that are simultaneously ordered along two distinct directions within the periodic matrix. Namely, the rods form long nanowires that span the length of the sample and lie perpendicular to these wires in regularly spaced A lamellae. Hence, our approach points to new routes for producing self-organized rectangular grids, which can impart remarkable optoelectronic or mechanical properties to the materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la401775pDOI Listing

Publication Analysis

Top Keywords

binary blends
12
mechanical properties
8
higher intensity
8
lamellar domains
8
light
6
rods
5
light guide
4
guide motion
4
motion nanorods
4
nanorods photoresponsive
4

Similar Publications

Introduction of a guest component into the active layer is a simple yet effective approach to enhance the performance of organic solar cells (OSCs). Despite various guest components successfully employed in the OSCs, efficient guest components require deliberate design and ingenious inspiration, which still remains a big challenge for developing high performance OSCs. In this work, we propose a concept of "structural gene" engineering to create a new "double-gene" small molecule (L-DBDD) by simply combining the structures of both donor PM6 and acceptor L8-BO.

View Article and Find Full Text PDF
Article Synopsis
  • Two new nonfused ring electron acceptors were synthesized, showing a unique A-D-A (acceptor-donor-acceptor) structure and demonstrating significant absorption properties in the range of 540 nm to 700 nm.
  • Their fluorescence occurs in the near-IR region, with lifetimes between 75-410 ps, and electrochemical measurements provide insights into their energy levels (HOMO and LUMO).
  • The nonfused NFAs were incorporated into photovoltaic cells, achieving impressive power conversion efficiencies of 10.17% and 14.09%, indicating their potential for simpler applications in organic solar technology.
View Article and Find Full Text PDF

Benzothiadiazole (BT) has shown promising applications in fullerene solar cells. However, few BT-based polymer donors exhibited a noticeable power conversion efficiency (PCE) for the fused-ring small molecular acceptor-based polymer solar cells (PSCs). Herein, we developed a D-A (D: donor, A: acceptor) polymer donor F-1 based on fluorinated BT (ffBT) as A unit and chlorinated benzo [1,2-b:4,5-b'] dithiophene (BDT-2Cl) as D unit.

View Article and Find Full Text PDF

Adsorption behavior of commercial biodegradable plastics towards pollutants during the biodegradation process: Taking starch-based biodegradable microplastics, oxytetracycline and Cu (II) as examples.

Environ Pollut

December 2024

College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China. Electronic address:

With the widespread use of biodegradable plastic bags, their potential environmental risks need further assessment. This study focused on commercial starch-based blended biodegradable microplastics (70% Poly(butylene adipate-co-terephthalate) (PBAT)+5% Poly(lactic acid) (PLA)+20% Thermoplastic starch (TPS), PPT MPs) to investigate their adsorption behaviors towards Cu(II) and oxytetracycline (OTC) under microbial colonization and biodegradation. Post-biodegradation, the hydroxyl (-OH) peak intensity of starch in PPT significantly decreased, while carbonyl (C=O) peaks of PBAT and PLA broadened, with O/C ratio rising from 14.

View Article and Find Full Text PDF

This study examines the impact of sodium citrate and a plasticizing additive, along with their sequential introduction into a cement slurry or concrete mix, on the heat evolution of the cement slurry, the microstructure, phase composition of the cement paste, and the compressive strength of fine-grained concrete. The binder used in this research was a blended binder consisting of 90% Portland cement and 10% calcium aluminate cement. This type of binder is characterized by an increased heat evolution and accelerated setting time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!