Transfer cells (TCs) are ubiquitous throughout the plant kingdom. Their unique ingrowth wall labyrinths, supporting a plasma membrane enriched in transporter proteins, provides these cells with an enhanced membrane transport capacity for resources. In certain plant species, TCs have been shown to function to facilitate phloem loading and/or unloading at cellular sites of intense resource exchange between symplasmic/apoplasmic compartments. Within the phloem, the key cellular locations of TCs are leaf minor veins of collection phloem and stem nodes of transport phloem. In these locations, companion and phloem parenchyma cells trans-differentiate to a TC morphology consistent with facilitating loading and re-distribution of resources, respectively. At a species level, occurrence of TCs is significantly higher in transport than in collection phloem. TCs are absent from release phloem, but occur within post-sieve element unloading pathways and particularly at interfaces between generations of developing Angiosperm seeds. Experimental accessibility of seed TCs has provided opportunities to investigate their inductive signaling, regulation of ingrowth wall formation and membrane transport function. This review uses this information base to explore current knowledge of phloem transport function and inductive signaling for phloem-associated TCs. The functional role of collection phloem and seed TCs is supported by definitive evidence, but no such information is available for stem node TCs that present an almost intractable experimental challenge. There is an emerging understanding of inductive signals and signaling pathways responsible for initiating trans-differentiation to a TC morphology in developing seeds. However, scant information is available to comment on a potential role for inductive signals (auxin, ethylene and reactive oxygen species) that induce seed TCs, in regulating induction of phloem-associated TCs. Biotic phloem invaders have been used as a model to speculate on involvement of these signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3696738PMC
http://dx.doi.org/10.3389/fpls.2013.00221DOI Listing

Publication Analysis

Top Keywords

collection phloem
12
seed tcs
12
phloem
11
tcs
11
transfer cells
8
ingrowth wall
8
membrane transport
8
inductive signaling
8
transport function
8
phloem-associated tcs
8

Similar Publications

Phytoplasmas are a group of plant-pathogenic, cell-wall-less bacteria vectored primarily by leafhoppers (Hemiptera Cicadellidae), one of the most diverse families of insects. Despite the importance of documenting associations between phytoplasmas, their insect vectors, and plant hosts to prevent disease outbreaks, such knowledge is currently highly incomplete and largely neglects the diversity of the system in natural areas. Here, we used anchored hybrid enrichment (AHE) to recover the DNA of five plant genes (, , , , and ) in 58 phloem-feeding leafhoppers from around the world that had previously tested positive for phytoplasma infection.

View Article and Find Full Text PDF

Thousand cankers disease (TCD) is a pathosystem comprised of Juglandacea spp., a pathogenic fungus Geosmithia morbida, and an insect vector, the walnut twig beetle (WTB) (Pityophthorus juglandis). Of the North American Juglans species, Juglans nigra is the most susceptible to TCD and has resulted in significant decline and mortality of urban and plantation trees in the western United States.

View Article and Find Full Text PDF

In an era of trade globalization and climate change, crop pathogens and pests are a genuine threat to food security. The detailed characterization of emerging pathogen populations is a prerequisite for managing invasive species pathways and designing sustainable disease control strategies. Huanglongbing is the disease that causes the most damage to citrus, a crop that ranks #1 worldwide in terms of fruit production.

View Article and Find Full Text PDF

Deep Sequencing Analysis of Virome Components, Viral Gene Expression and Antiviral RNAi Responses in Aphids.

Int J Mol Sci

December 2024

PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France.

The green peach aphid () is a generalist pest damaging crops and transmitting viral pathogens. Using Illumina sequencing of small (s)RNAs and poly(A)-enriched long RNAs, we analyzed aphid virome components, viral gene expression and antiviral RNA interference (RNAi) responses. Myzus persicae densovirus (family ), a single-stranded (ss)DNA virus persisting in the aphid population, produced 22 nucleotide sRNAs from both strands of the entire genome, including 5'- and 3'-inverted terminal repeats.

View Article and Find Full Text PDF
Article Synopsis
  • * Research indicates that populations from forest plantations have noteworthy shoot growth and moderate chlorophyll levels, while agricultural field populations demonstrate robust biomass and enhanced photosynthetic capacity, like higher chlorophyll and carotenoid levels.
  • * Roadside populations exhibit adaptations like deeper roots and greater leaf expansion but show reduced biomass; they're able to cope with environmental stress despite lower overall growth compared to other habitats.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!