We propose a transparent climate debt index incorporating both methane (CH4) and carbon dioxide (CO2) emissions. We develop national historic emissions databases for both greenhouse gases to 2005, justifying 1950 as the starting point for global perspectives. We include CO2 emissions from fossil sources [CO2(f)], as well as, in a separate analysis, land use change and forestry. We calculate the CO2(f) and CH4 remaining in the atmosphere in 2005 from 205 countries using the Intergovernmental Panel on Climate Change's Fourth Assessment Report impulse response functions. We use these calculations to estimate the fraction of remaining global emissions due to each country, which is applied to total radiative forcing in 2005 to determine the combined climate debt from both greenhouse gases in units of milliwatts per square meter per country or microwatts per square meter per person, a metric we term international natural debt (IND). Australia becomes the most indebted large country per capita because of high CH4 emissions, overtaking the United States, which is highest for CO2(f). The differences between the INDs of developing and developed countries decline but remain large. We use IND to assess the relative reduction in IND from choosing between CO2(f) and CH4`control measures and to contrast the imposed versus experienced health impacts from climate change. Based on 2005 emissions, the same hypothetical impact on world 2050 IND could be achieved by decreasing CH4 emissions by 46% as stopping CO2 emissions entirely, but with substantial differences among countries, implying differential optimal strategies. Adding CH4 shifts the basic narrative about differential international accountability for climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732991 | PMC |
http://dx.doi.org/10.1073/pnas.1308004110 | DOI Listing |
Front Artif Intell
January 2025
Lawrence Livermore National Laboratory, Livermore, CA, United States.
Packed columns are commonly used in post-combustion processes to capture CO emissions by providing enhanced contact area between a CO-laden gas and CO-absorbing solvent. To study and optimize solvent-based post-combustion carbon capture systems (CCSs), computational fluid dynamics (CFD) can be used to model the liquid-gas countercurrent flow hydrodynamics in these columns and derive key determinants of CO-capture efficiency. However, the large design space of these systems hinders the application of CFD for design optimization due to its high computational cost.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran.
This paper presents the first-time synthesis of CoFe Co O nanoparticles (where x = 0.0, 0.1, 0.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China.
Electric vehicles (EVs) are crucial for addressing the intertwined challenges of climate change and air pollution. The multiaspect benefits of EVs are highly dependent on local climate conditions, yet the impacts of regional heterogeneity in the context of future climate change remain unclear. Here, we develop a systemic modeling framework integrating fleet modeling, emission projection, index decomposition analysis, and detailed cost assessment to identify local drivers and potential trade-offs behind electrification.
View Article and Find Full Text PDFSci Rep
January 2025
School of BioSciences, Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Melbourne, 3010, Australia.
Climate change has direct impacts on current and future agricultural productivity. Statistical meta-analysis models can be used to generate expectations of crop yield responses to climatic factors by pooling data from controlled experiments. However, methodological challenges in performing these meta-analyses, together with combined uncertainty from various sources, make it difficult to validate model results.
View Article and Find Full Text PDFSci Rep
January 2025
College of Economic and Management, Chongqing Industry Polytechnic College, Chongqing, 401120, China.
Environmental rules and regulations are essential instruments the government administration uses to control environmental problems in this era of advanced technologies and smooth economic growth. This paper aims to examine how environmental regulations, both mandatory and incentive-based, impact on carbon dioxide (CO2) emissions in the presence of urbanization, foreign trade, economic growth and energy efficiency (EE) in logistics transportation. The influence of explicating factors on dependent variables, such as the highest, lowest, and mean, is estimated using the quantile regression model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!