Guanidinoacetate methyltransferase (GAMT) deficiency is a rare disorder of creatine synthesis resulting in cerebral creatine depletion. We present a 38-year-old patient, the first Japanese case of GAMT deficiency. Developmental delay started after a few months of age with a marked delay in language, which resulted in severe intellectual deficit. She showed hyperactivity and trichotillomania from childhood. Epileptic seizures appeared at 18 months and she had multiple types of seizures including epileptic spasms, brief tonic seizures, atypical absences, complex partial seizures with secondary generalization, and "drop" seizures. They have been refractory to multiple antiepileptic drugs. Although there have been no involuntary movements, magnetic resonance imaging revealed T2 hyperintense lesions in bilateral globus pallidi. Motor regression started around 30 years of age and the patient is now able to walk for only short periods. Very low serum creatinine levels measured by enzymatic method raised a suspicion of GAMT deficiency, which was confirmed by proton magnetic resonance spectroscopy and urinary guanidinoacetate assay. GAMT gene analysis revealed that the patient is a compound heterozygote of c.578A>G, p.Gln193Arg and splice site mutation, c.391G>C, p.Gly131Arg, neither of which have been reported in the literature. We also identified two aberrant splice products from the patient's cDNA analysis. The patient was recently started on supplementation of high-dose creatine and ornithine, the effects of which are currently under evaluation. Although rare, patients with developmental delay, epilepsy, behavioral problems, and movement disorders should be vigorously screened for GAMT deficiency, as it is a treatable disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897789 | PMC |
http://dx.doi.org/10.1007/8904_2013_245 | DOI Listing |
Int J Mol Sci
November 2024
Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada.
L-arginine: glycine amidinotransferase (AGAT) gained academic interest as the rate-limiting enzyme in creatine biosynthesis and its role in the regulation of creatine homeostasis. Of clinical relevance is the diagnosis of patients with AGAT deficiency but also the potential role of AGAT as therapeutic target for the treatment of another creatine deficiency syndrome, guanidinoacetate N-methyltransferase (GAMT) deficiency. Applying a stable isotope-labeled substrate method, we utilized ARG 15N (ARG-δ2) and GLY 13C15N (GLY-δ3) to determine the rate of 1,2-13C,15N guanidinoacetate (GAA-δ5) formation to assess AGAT activity in various mouse tissue samples and human-derived cells.
View Article and Find Full Text PDFExpert Opin Drug Discov
November 2024
Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
Background: Targeting the enzyme L-Arginine:glycine amidinotransferase (AGAT) to reduce the formation of guanidinoacetate (GAA) in patients with guanidinoacetate methyltransferase (GAMT) deficiency, we attempted to identify drugs for repurposing that reduce the expression of AGAT via transcriptional inhibition.
Research Design And Methods: The authors applied a HeLa cell line stably expressing AGAT promoter and firefly luciferase reporter for high-content screening and secondary screening. For further assessment, the authors integrated Nanoluc luciferase as a reporter into the endogenous AGAT gene in HAP1 cell lines and used the human immortalized cell line RH30 as model of GAMT deficiency.
medRxiv
September 2024
Board of Directors & Staff, Association for Creatine Deficiencies, Carlsbad, CA, USA.
Mol Genet Metab Rep
March 2024
Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Germany.
GAMT deficiency is a rare autosomal recessive disease within the group of cerebral creatine deficiency syndromes. Cerebral creatine depletion and accumulation of guanidinoacetate (GAA) lead to clinical presentation with intellectual disability, seizures, speech disturbances and movement disorders. Treatment consists of daily creatine supplementation to increase cerebral creatine, reduction of arginine intake and supplementation of ornithine for reduction of toxic GAA levels.
View Article and Find Full Text PDFMol Genet Metab
May 2024
Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada. Electronic address:
Cerebral creatine deficiency syndromes (CCDS) are inherited metabolic phenotypes of creatine synthesis and transport. There are two enzyme deficiencies, guanidinoacetate methyltransferase (GAMT), encoded by GAMT and arginine-glycine amidinotransferase (AGAT), encoded by GATM, which are involved in the synthesis of creatine. After synthesis, creatine is taken up by a sodium-dependent membrane bound creatine transporter (CRTR), encoded by SLC6A8, into all organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!