The nicotinic acetylcholine receptor (nAChR) subtype α6β2* (the asterisk denotes the possible presence of additional subunits) has been identified as an important molecular target for the pharmacotherapy of Parkinson disease and nicotine dependence. The α6 subunit is closely related to the α3 subunit, and this presents a problem in designing ligands that discriminate between α6β2* and α3β2* nAChRs. We used positional scanning mutagenesis of α-conotoxin PeIA, which targets both α6β2* and α3β2*, in combination with mutagenesis of the α6 and α3 subunits, to gain molecular insights into the interaction of PeIA with heterologously expressed α6/α3β2β3 and α3β2 receptors. Mutagenesis of PeIA revealed that Asn(11) was located in an important position that interacts with the α6 and α3 subunits. Substitution of Asn(11) with a positively charged amino acid essentially abolished the activity of PeIA for α3β2 but not for α6/α3β2β3 receptors. These results were used to synthesize a PeIA analog that was >15,000-fold more potent on α6/α3β2β3 than α3β2 receptors. Analogs with an N11R substitution were then used to show a critical interaction between the 11th position of PeIA and Glu(152) of the α6 subunit and Lys(152) of the α3 subunit. The results of these studies provide molecular insights into designing ligands that selectively target α6β2* nAChRs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3757205 | PMC |
http://dx.doi.org/10.1074/jbc.M113.482059 | DOI Listing |
ISME Commun
January 2024
BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
The archaeal class is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar.
View Article and Find Full Text PDFJ Pharm Sci
August 2024
ImmunXperts, a Q2 Solutions Company, Gosselies, Belgium.
Cell therapies such as genetically modified T cells have emerged as a promising and viable treatment for hematologic cancers and are being aggressively pursued for a wide range of diseases and conditions that were previously difficult to treat or had no cure. The process development requires genetic modifications to T cells to express a receptor (engineered T cell receptor (eTCR)) of specific binding qualities to the desired target. Protein reagents utilized during the cell therapy manufacturing process, to facilitate these genetic modifications, are often present as process-related impurities at residual levels in the final drug product and can represent a potential immunogenicity risk upon infusion.
View Article and Find Full Text PDFBioorg Chem
March 2024
Department of Drug Science and Technology, University of Turin, Turin, Italy.
Cancer spreading through metastatic processes is one of the major causes of tumour-related mortality. Metastasis is a complex phenomenon which involves multiple pathways ranging from cell metabolic alterations to changes in the biophysical phenotype of cells and tissues. In the search for new effective anti-metastatic agents, we modulated the chemical structure of the lead compound AA6, in order to find the structural determinants of activity, and to identify the cellular target responsible of the downstream anti-metastatic effects observed.
View Article and Find Full Text PDFHeliyon
September 2023
Siberian Federal Scientific Center of Agrobiotechnology RAS, 2b Centralnaya, Krasnoobsk, 630501, Russia.
Twenty vegetable amaranth (VA) genotypes were evaluated to assess the variability, associations, path coefficient, and principal component analysis (PCA) of morpho-chemical traits. The genotypes exhibited adequate antioxidant colorants, phytochemicals, and antiradical capacity with significant variations across genotypes. Genetic parameters revealed selection criteria for the majority of the traits for improving amaranth foliage yield (FY).
View Article and Find Full Text PDFACS Synth Biol
October 2023
Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States.
Sustainably enhancing crop production is a global necessity to meet the escalating demand for staple crops while sustainably managing their associated carbon/nitrogen inputs. Leveraging plant-associated microbiomes is a promising avenue for addressing this demand. However, studying these communities and engineering them for sustainable enhancement of crop production have remained a challenge due to limited genetic tools and methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!