Contributions of leukocyte angiotensin-converting enzyme to development of atherosclerosis.

Arterioscler Thromb Vasc Biol

Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536-0509, USA.

Published: September 2013

Objective: This study determined the role of angiotensin-converting enzyme (ACE) on the development of angiotensin I-induced atherosclerosis and the contribution of leukocyte-specific expression of this enzyme.

Approach And Results: To define the contribution of ACE-dependent activity to angiotensin II synthesis in atherosclerotic development, male low-density lipoprotein receptor(-/-) mice were fed a fat-enriched diet and infused with either angiotensin I or angiotensin II. The same infusion rate of these peptides had equivalent effects on atherosclerotic development. Coinfusion of an ACE inhibitor, enalapril, ablated angiotensin I-augmented atherosclerosis but had no effect on angiotensin II-induced lesion development. ACE protein was detected in several cell types in atherosclerotic lesions, with a predominance in macrophages. This cell type secreted angiotensin II, which was ablated by ACE inhibition. To study whether leukocyte ACE contributed to atherosclerosis, irradiated male low-density lipoprotein receptor(-/-) mice were repopulated with bone marrow-derived cells from either ACE(+/+) or ACE(-/-) mice and fed the fat-enriched diet for 12 weeks. Chimeric mice with ACE deficiency in bone marrow-derived cells had modestly reduced atherosclerotic lesions in aortic arches but had no effects in aortic roots.

Conclusions: ACE mediates angiotensin I-induced atherosclerosis, and ACE expression in leukocytes modestly contributes to atherosclerotic development in hypercholesterolemic mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868562PMC
http://dx.doi.org/10.1161/ATVBAHA.113.301777DOI Listing

Publication Analysis

Top Keywords

atherosclerotic development
12
angiotensin-converting enzyme
8
ace
8
angiotensin
8
angiotensin i-induced
8
i-induced atherosclerosis
8
male low-density
8
low-density lipoprotein
8
lipoprotein receptor-/-
8
receptor-/- mice
8

Similar Publications

Mycoplasma pneumoniae drives macrophage lipid uptake via GlpD-mediated oxidation, facilitating foam cell formation.

Int J Med Microbiol

January 2025

Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.

Cardiovascular diseases, primarily caused by atherosclerosis, are a major public health concern worldwide. Atherosclerosis is characterized by chronic inflammation and lipid accumulation in the arterial wall, leading to plaque formation. In this process, macrophages play a crucial role by ingesting lipids and transforming into foam cells, which contribute to plaque instability and cardiovascular events.

View Article and Find Full Text PDF

Premature Coronary Artery Disease Presenting as STEMI in a Teenager.

J Investig Med High Impact Case Rep

January 2025

LSU Health Shreveport, LA, USA.

An 18-year-old teenager with significant atherosclerotic cardiovascular disease (ASCVD) risk factors developed acute chest pain. His electrocardiogram showed inferior ST-segment elevations. Emergent coronary angiogram revealed complete thrombotic occlusion of the right coronary artery.

View Article and Find Full Text PDF

Omics Approaches to Study Perilipins and Their Significant Biological Role in Cardiometabolic Disorders.

Int J Mol Sci

January 2025

Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy.

Lipid droplets (LDs), highly dynamic cellular organelles specialized in lipid storage and maintenance of lipid homeostasis, contain several proteins on their surface, among which the perilipin (Plin) family stands out as the most abundant group of LD-binding proteins. They play a pivotal role in influencing the behavior and functionality of LDs, regulating lipase activity, and preserving a balance between lipid synthesis and degradation, which is crucial in the development of obesity and abnormal accumulation of fat in non-adipose tissues, causing negative adverse biological effects, such as insulin resistance, mitochondrial dysfunction, and inflammation. The expression levels of Plins are often associated with various diseases, such as hepatic steatosis and atherosclerotic plaque formation.

View Article and Find Full Text PDF

Individuals with chronic inflammatory and immune disorders are at an increased risk of atherosclerotic events and premature cardiovascular (CV) disease. Despite extensive literature exploring the relationship between "non-traditional" atherosclerotic conditions and CV risk, many aspects remain unresolved, including the underlying mechanisms promoting the "non-traditional CV risk", the development of an innovative and comprehensive CV risk assessment tool, and recommendations for tailored interventions. This review aims to evaluate the available evidence on key "non-traditional" CV risk-enhancer conditions, with a focus on assessing and managing CV risk factors.

View Article and Find Full Text PDF

: In developed countries, stroke is the fifth cause of death, with a high mortality rate, and with recovery to normal neurological function in one-third of survivors. Atherosclerotic occlusive disease of the extracranial part of the internal carotid artery and related embolic complications are common preventable causes of ischemic stroke (IS), attributable to 7-18% of all first-time cases. Osteoprotegerin (OPG), a soluble member of the tumor necrosis factor receptor (TNFR) superfamily, is considered a modulator of vascular calcification linked to vascular smooth muscle cell proliferation and collagen production in atherosclerotic plaques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!