Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Water reflection, a typical imperfect reflection symmetry problem, plays an important role in image content analysis. Existing techniques of symmetry recognition, however, cannot recognize water reflection images correctly because of the complex and various distortions caused by the water wave. Hence, we propose a novel water reflection recognition technique to solve the problem. First, we construct a novel feature space composed of motion blur invariant moments in low-frequency curvelet space and of curvelet coefficients in high-frequency curvelet space. Second, we propose an efficient algorithm including two sub-algorithms: low-frequency reflection cost minimization and high-frequency curvelet coefficients discrimination to classify water reflection images and to determine the reflection axis. Through experimenting on authentic images in a series of tasks, the proposed techniques prove effective and reliable in classifying water reflection images and detecting the reflection axis, as well as in retrieving images with water reflection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2013.2271851 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!