We present the first quantitative comparison of eddy dispersion in the bulk macropore (flow-through) space of 1st and 2nd generation analytical silica monoliths. Based on samples taken from the bulk region of Chromolith columns, segments of the bulk macropore space were physically reconstructed by confocal laser scanning microscopy to serve as models in pore-scale simulations of flow and dispersion. Our results cover details of the 3D velocity field, macroscopic Darcy permeability, transient and asymptotic dispersion behavior, and chromatographic band broadening, and thus correlate morphological, microscopic, and macroscopic properties. A complete set of parameters for the individual eddy dispersion contributions in the bulk was obtained from a Giddings analysis of the simulated plate height data. The identified short-range structural heterogeneities correspond to the average domain size of the respective monoliths. Our plate height curves show that structural improvements in the bulk morphology of 2nd generation monoliths play only a minor role for the observed improvement in overall column efficiency. The results also indicate a topological dissimilarity between 1st and 2nd generation analytical silica monoliths, which raises the question how the domain size of silica monoliths can be further decreased without compromising the structural homogeneity of the bed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2013.06.039DOI Listing

Publication Analysis

Top Keywords

silica monoliths
16
generation analytical
12
analytical silica
12
eddy dispersion
12
2nd generation
12
pore-scale simulations
8
dispersion bulk
8
bulk region
8
bulk macropore
8
1st 2nd
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!