Neuronal degeneration in the post-menopausal term leads to cognitive symptoms such as anxiety, difficulty in concentrating, overreacting to minor upsets, quickly becoming irritated and forgetfulness in approximately 70-80% of all women around the world. These symptoms, which result from microtubule damage in the axon extensions of hippocampal neurons in during menopause, greatly reduce individuals' life quality. Thus, an investigation of the estrogen receptor-signaling pathway-microtubule dynamic triangle and the possible links between them is important when it comes to explaining the possible mechanism of neurodegeneration. Hematopoietic Pbx-interaction protein (HPIP), a microtubule-binding protein, is a novel scaffolding protein. The detection of this protein on neurons represents the most important step in our hypothesis. The importance of the hypothesis is that it might provide important clues about the possible role of HPIP and its mechanism through in vivo and in vitro studies of estrogen receptors-microtubules and the HPIP triangle in terms of neuronal degeneration in the post-menopausal period. A preliminary study was performed to test the main part of our hypothesis using real-time PCR. According to the results, the mRNA expression of HPIP was found in hippocampal neurons. After the detection of this novel protein in neurons, it was observed that there were differences in the experimental groups when compared with the control group relating to the mRNA expression of this protein. An important scientific question remains concerning the mechanisms of neurodegeneration appearing in the post-menopausal period and the receptors, proteins, and signaling pathways that play a role in this degeneration. In consideration of the data from in vivo and in vitro studies used to test our hypothesis, we will try to address the relevant questions. As this issue is resolved, new studies and treatment procedures that can help to prevent the possible difficulties in the menopausal period will be illuminated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mehy.2013.06.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!