Various structural models for amyloid β fibrils have been derived from a variety of experimental techniques. However, these models cannot differentiate between the relative position of the two arms of the β hairpin called the stagger. Amyloid fibrils of various hierarchical levels form left-handed helices composed of β sheets. However it is unclear if positive, negative and zero staggers all form the macroscopic left-handed helices. To address this issue we have conducted extensive molecular dynamics simulations of amyloid β sheets of various staggers and shown that only negative staggers lead to the experimentally observed left-handed helices while positive staggers generate the incorrect right-handed helices. This result suggests that the negative staggers are physiologically relevant structure of the amyloid β fibrils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2013.06.050 | DOI Listing |
Metab Brain Dis
January 2025
Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Pharmacology, Central University of Punjab, Bathinda, 151001, Punjab, India.
Alzheimer's Disease (AD), a progressive and age-associated neurodegenerative disorder, is primarily characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Despite advances in targeting Aβ-mediated neuronal damage with anti-Aβ antibodies, these treatments provide only symptomatic relief and fail to address the multifactorial pathology of the disease. This necessitates the exploration of novel therapeutic approaches and a deeper understanding of molecular signaling mechanisms underlying AD.
View Article and Find Full Text PDFBackground: The aim of this study was to explore the clinical application value of serum inflammatory markers in the diagnosis and treatment of benign prostatic hyperplasia (BPH) in elderly men.
Methods: From April 2023 through July 2023, 110 BPH patients and 120 healthy individuals who underwent examinations at our hospital were selected as study subjects. The concentrations of C-reactive protein (CRP), procalcitonin (PCT), serum amyloid A (SAA), complement 3 (C3), and complement 4 (C4) were measured in both groups.
Soft Matter
January 2025
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Microfluidic chips are powerful tools for investigating numerous variables including chemical and physical parameters on protein aggregation. This study investigated the aggregation of bovine serum albumin (BSA) in two different systems: a vial-based static system and a microfluidic chip-based dynamic system in which BSA aggregation was induced successfully. BSA aggregation induced in a microfluidic chip on a timescale of seconds enabled a dynamic investigation of the forces driving the aggregation process.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Rush University Medical Center, Chicago, Illinois, USA.
Limbic predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is highly prevalent in late life and a common co-pathology with Alzheimer's disease neuropathologic change (ADNC). LATE-NC is a slowly progressive, amnestic clinical syndrome. Alternatively, when present with ADNC, LATE-NC is associated with a more rapid course.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!