Few attempts have been made to study the alleviating effects of signal molecules on zoysiagrass (Zoysiajaponica) under drought stress. Calcium chloride has been shown to ameliorate the adverse effects of drought stress on many plants. It is necessary to investigate how to enhance drought tolerance of zoysiagrass using calcium chloride. The study elucidated the effects of calcium chloride on zoysiagrass under drought conditions by investigating the following parameters: biomass, chlorophyll (Chl) content, net photosynthetic rate (Pn), chlorophyll fluorescence, antioxidant enzymes, proline content, and malondialdehyde (MDA) content. Experimental conditions consisted of an aqueous CaCl2 solution at 5, 10, and 20 mM sprayed on zoysiagrass leaves for 3 d, following by an inducement of drought conditions by withholding water for 16 d. Under drought conditions, all CaCl2 pretreatments were found to increase the above-ground fresh biomass, as well as below-ground fresh and dry biomass. The resulting Chl (a, b, a+b) contents of the 5 and 10 mM CaCl2 pretreatment groups were higher than those of the control. In the later stages of drought conditions, the chlorophyll fluorescence parameter Fv/Fm was higher in leaves treated with 10 mM CaCl2 than in the leaves of the other two treatment groups. Zoysiagrass pretreated with 10 mM CaCl2 possessed both the maximum observed Pn and antioxidant enzyme activities. Meanwhile, lower MDA and proline contents were recorded in the plants pretreated with 5 and 10 mM CaCl2 under drought conditions. As a whole, the drought tolerance of zoysiagrass was improved to some extent by the application of a moderate calcium concentration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699550PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068214PLOS

Publication Analysis

Top Keywords

drought conditions
24
calcium chloride
16
drought
10
drought stress
8
drought tolerance
8
tolerance zoysiagrass
8
chlorophyll fluorescence
8
pretreated cacl2
8
conditions
7
zoysiagrass
6

Similar Publications

Higher PEPC activity and vein density contribute to improve cotton leaf water use efficiency under water stress.

Plant Biol (Stuttg)

January 2025

Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.

Plants with the C photosynthetic pathway can withstand water stress better than plants with C metabolism. However, it is unclear whether C photosynthesis can be preliminarily activated in droughted cotton leaves, and if this contributes to increase in water use efficiency (WUE). An upland cotton (Gossypium hirsutum L.

View Article and Find Full Text PDF

Introduction: Sorghum bicolor: widely cultivated in Asia and Africa, faces increasing challenges from climate change, specifically from abiotic stresses like drought and salinity. This study evaluates how different sorghum genotypes respond to separate and combined stresses of drought and salinity.

Methods: Carried out with three replications using a randomized complete block design, the experiment measured biochemical and physiological parameters, including stomatal conductance, chlorophyll content, and antioxidant enzyme activities.

View Article and Find Full Text PDF

Peanut is a vital source of protein, particularly in the tropical regions of Asian and African countries. About three-quarters of peanut production occurs worldwide in arid and semi-arid regions, making drought an important concern in peanut production. In the US about two-thirds of peanuts are grown in non-irrigated lands, where drought accounts for 50 million USD loss each year.

View Article and Find Full Text PDF

Plants commonly undergo leaf morphoanatomy and composition modifications to cope with drought stress, and these tend to reduce mesophyll conductance to CO2 diffusion (gm), a key limitation to photosynthesis. The cell wall appears to play a crucial role in this reduction, yet the specific effect of cell wall compositions on gm and the underlying regulatory mechanisms of cell wall thickness (Tcw) variation are not well understood. In this study, we subjected cotton plants to varying levels of water deficit to investigate the impact of leaf cell wall composition and the arrangement patterns of microfibrils within cell walls on Tcw and leaf gas exchange.

View Article and Find Full Text PDF

Phosphorylation of Arabidopsis NRT1.1 regulates plant stomatal aperture and drought resistance in low nitrate condition.

BMC Plant Biol

January 2025

MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Background: NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!