Adipose tissue inflammation and specifically, pro-inflammatory macrophages are believed to contribute to insulin resistance (IR) in obesity in humans and animal models. Recent studies have invoked T cells in the recruitment of pro-inflammatory macrophages and the development of IR. To test the role of the T cell response in adipose tissue of mice fed an obesogenic diet, we used two agents (CTLA-4 Ig and anti-CD40L antibody) that block co-stimulation, which is essential for full T cell activation. C57BL/6 mice were fed an obesogenic diet for 16 weeks, and concomitantly either treated with CTLA-4 Ig, anti-CD40L antibody or an IgG control (300 µg/week). The treatments altered the immune cell composition of adipose tissue in obese mice. Treated mice demonstrated a marked reduction in pro-inflammatory adipose tissue macrophages and activated CD8+ T cells. Mice treated with anti-CD40L exhibited reduced weight gain, which was accompanied by a trend toward improved IR. CTLA-4 Ig treatment, however, was not associated with improved IR. These data suggest that the presence of pro-inflammatory T cells and macrophages can be altered with co-stimulatory inhibitors, but may not be a significant contributor to the whole body IR phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699637PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067709PLOS

Publication Analysis

Top Keywords

adipose tissue
20
cell activation
8
tissue obese
8
obese mice
8
pro-inflammatory macrophages
8
mice fed
8
fed obesogenic
8
obesogenic diet
8
ctla-4 anti-cd40l
8
anti-cd40l antibody
8

Similar Publications

Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side.

Pharmaceutics

December 2024

Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.

The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.

View Article and Find Full Text PDF

: The prevalence of metabolic syndrome in children has been increasing, raising concerns about early detection and clinical management. Adipokines, which are secreted by adipose tissue, play a critical role in metabolic regulation and inflammation, while gamma-glutamyl transferase (GGT), as a liver enzyme, is linked to oxidative stress and metabolic disorders. The objective was to examine the association of circulating adipokines and GGT with metabolic syndrome risk in school-aged children from Northeast Mexico.

View Article and Find Full Text PDF

Background: Multimodal prehabilitation programs, which may incorporate nutritional supplementation and exercise, have been developed to combat sarcopenia in surgical patients to enhance post-operative outcomes. However, the optimal regime remains unknown. The use of beta-hydroxy beta-methylbutyrate (HMB) has beneficial effects on muscle mass and strength.

View Article and Find Full Text PDF

Background: Obesity and related metabolic disorders have reached epidemic levels, calling for diverse therapeutic strategies. Altering nutrient intake, timing and quantity by intermittent fasting seems to elicit beneficial health effects by modulating endocrine and cell signaling networks. This study explores the impact of cyclic nutrient availability in the form of every-other-day fasting (EODF) on human adipose stem cells (ASCs).

View Article and Find Full Text PDF

Background/objectives: Functional probiotics, particularly subsp. CKDB001, have shown potential as a therapeutic option for metabolic dysfunction-associated steatotic liver disease (MASLD). However, their effects have not been confirmed in in vivo systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!