The Japanese sika deep (Cervus nippon) proved to be a suitable animal model for the study of acute phases of in vivo erythrocyte sickling. Ophthalmologic studies can be conducted during or after 1 to 6 hours of effective in vivo sickling. Intravenous administration of 1.75 to 3.5% sodium bicarbonate solution at a rate of 500 to 1,000 ml per hour produced a transient state of alkalosis and in vivo erythrocyte sickling in the sika deer. The percentage of sickled erythrocytes increased as the blood pH increased. Concurrently, the packed cell volume decreased. Sickling was enhanced by 100% oxygen ventilation after endotracheal intubation and light anesthetization. After the induction of erythrocyte sickling, a sickling-reversal phenomenon occurred despite continued bicarbonate administration. During the course of this reversal, the percentage of sickled erythrocytes steadily decreased, the venous blood pH decreased, and the packed cell volume slowly increased. Because of the sickling-reversal phenomenon, chronic erythrocyte sickling was not achieved.
Download full-text PDF |
Source |
---|
Comput Biol Med
January 2025
SCOPIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, Palma, E-07122, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, E-07122, Spain; Laboratory for Artificial Intelligence Applications at UIB (LAIA@UIB), Palma, E-07122, Spain; Artificial Intelligence Research Institute of the Balearic Islands (IAIB), Palma, E-07122, Spain. Electronic address:
Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis.
View Article and Find Full Text PDFBlood
January 2025
New York Blood Center, New York, New York, United States.
Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheological parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild type AA, sickle trait AS and sickle SS RBCs. Our ektacytometry (LORRCA) analysis demonstrates that the changes in the host RBC bio-mechanical properties, pre- and post- Babesia infection, reside on a spectrum of severity, with wild type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype; compared to infected AS RBCs which show median changes in deformability and infected SS RBCs which exhibit the most dramatic impact of infection on cellular rheology, including an increase in Point of Sickling values.
View Article and Find Full Text PDFHematol Rep
January 2025
Laboratory of Immunobiology and Immunogenetics, Post Graduation Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil.
A quarter of a century ago, sickle cell disease (SCD) was mainly viewed as a typical genetic disease inherited as a classical Mendelian trait. Therefore, the main focus concerning SCD was on diagnosis, meaning, genotyping, and identification of homozygous and heterozygous individuals carrying the relevant HbS mutant allele. Nowadays, it is well established that sickle cell disease is indeed the result of homozygosis for the HbS variant, although this single feature is not capable of explaining the highly diverse clinical presentation of SCD.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil. Electronic address:
Mannose-binding lectin (MBL) is an important glycoprotein of the human innate immune system. Furthermore, individuals with sickle cell anemia (SCA) and MBL deficiency seem more susceptible to vaso-occlusive crises, suggesting an MBL role on HbSS red blood cells (RBCs). This study investigated the interaction of MBL with HbA (healthy) and HbSS RBCs using optical tweezers (OT) and atomic force microscopy (AFM).
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Internal Medicine, Section of Hematology/Oncology, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
Sickle cell disease (SCD) is an inherited hematologic disease caused by sickle hemoglobin as the predominant RBC hemoglobin or by sickle hemoglobin in combination with other abnormal β-hemoglobin variants like HbC, HbD and others. Sickling of erythrocytes under deoxygenated conditions is the basis of inflammatory and thrombotic cascades which result in multiple serious complications, leading to early morbidity and mortality. While HLA-matched allogeneic bone marrow transplantation is potentially curative, it has considerable limitations due to potential severe toxicities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!