Cardiovascular adjustments to exercise are partially mediated by group III/IV (small to medium) muscle afferents comprising the exercise pressor reflex (EPR). However, this reflex can be inappropriately activated in disease states (e.g., peripheral vascular disease), leading to increased risk of myocardial infarction. Here we investigate the voltage-dependent calcium (CaV) channels expressed in small to medium muscle afferent neurons as a first step toward determining their potential role in controlling the EPR. Using specific blockers and 5 mM Ba(2+) as the charge carrier, we found the major calcium channel types to be CaV2.2 (N-type) > CaV2.1 (P/Q-type) > CaV1.2 (L-type). Surprisingly, the CaV2.3 channel (R-type) blocker SNX482 was without effect. However, R-type currents are more prominent when recorded in Ca(2+) (Liang and Elmslie 2001). We reexamined the channel types using 10 mM Ca(2+) as the charge carrier, but results were similar to those in Ba(2+). SNX482 was without effect even though ∼27% of the current was blocker insensitive. Using multiple methods, we demonstrate that CaV2.3 channels are functionally expressed in muscle afferent neurons. Finally, ATP is an important modulator of the EPR, and we examined the effect on CaV currents. ATP reduced CaV current primarily via G protein βγ-mediated inhibition of CaV2.2 channels. We conclude that small to medium muscle afferent neurons primarily express CaV2.2 > CaV2.1 ≥ CaV2.3 > CaV1.2 channels. As with chronic pain, CaV2.2 channel blockers may be useful in controlling inappropriate activation of the EPR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042423PMC
http://dx.doi.org/10.1152/jn.00069.2013DOI Listing

Publication Analysis

Top Keywords

muscle afferent
16
afferent neurons
16
channel types
12
small medium
12
medium muscle
12
expressed muscle
8
charge carrier
8
channel
5
muscle
5
identification cav
4

Similar Publications

The intersection of endocrine signaling and neuroimmune communication regulates muscle inflammation-induced nociception in neonatal mice.

Brain Behav Immun

December 2024

Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, United States. Electronic address:

Neonatal pain is a significant clinical issue but the mechanisms by which pain is produced early in life are poorly understood. Our recent work has linked the transcription factor serum response factor downstream of local growth hormone (GH) signaling to incision-related hypersensitivity in neonates. However, it remains unclear if similar mechanisms contribute to inflammatory pain in neonates.

View Article and Find Full Text PDF

Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from six cats.

View Article and Find Full Text PDF

In a recently developed associative rehabilitative brain computer interface system, electroencephalography is used to identify the most active phase of the motor cortex during attempted movement and deliver precisely timed peripheral stimulation during training. This approach has been demonstrated to facilitate corticospinal excitability and functional recovery in patients with lower limb weakness following stroke. The current study expands those findings by investigating changes in corticospinal excitability following the associative BCI intervention in post-stroke patients with upper limb weakness.

View Article and Find Full Text PDF

Pharmacological blocking of spinal GABA receptors in monkeys reduces sensory transmission to the spinal cord, thalamus, and cortex.

Cell Rep

December 2024

Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:

A century of research established that GABA inhibits proprioceptive inputs presynaptically to sculpt spinal neural inputs into skilled motor output. Recent results in mice challenged this theory by showing that GABA can also facilitate action potential conduction in proprioceptive afferents. Here, we tackle this controversy in monkeys, the most human-relevant animal model, and show that GABA receptors (GABARs) indeed facilitate sensory inputs to spinal motoneurons and interneurons and that this mechanism also influences sensory transmission to supraspinal centers.

View Article and Find Full Text PDF

Botulinum toxin modulates the blink reflex via the trigeminal afferent system in hemifacial spasm: an early and late-term effect.

Neurol Sci

December 2024

Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey.

Background: There is growing evidence that botulinum neurotoxin (BoNT) can mediate changes at the central level through peripheral mechanisms, leading to alterations in central sensorimotor integration. However, the effect of BoNT on brainstem excitability in patients with hemifacial spasm(HFS) is not yet fully understood, and its long-term effects remain unknown.

Objective: This study aims to investigate the impact of BoNT on the excitability of the facial nucleus in patients with idiopathic HFS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!