Implications of genetic testing in noncompaction/hypertrabeculation.

Am J Med Genet C Semin Med Genet

Division of Medical Genetics, Department of Pediatrics, Institute for Human Genetics, University of California San Francisco, UCSF Benioff Children's Hospital, San Francisco, CA, USA.

Published: August 2013

Noncompaction/hypertrabeculation is increasingly being recognized in children and adults, yet we understand little about the causes of disease. Genes associated with noncompaction/hypertrabeculation have been identified, but how can these assist in clinical management? Genomic technologies have also expanded tremendously, making testing more comprehensive, but they also present new questions given the tremendous diversity of phenotypes and variability of genomes. Here we present genetic evaluation strategies and assess clinical testing options for noncompaction/hypertrabeculation. We assess genes/gene panels offered by clinical laboratories and the potential for high-throughput sequencing to fuel further discovery. We discuss challenges in cardiovascular genetics, such as interpretation of genomic variants, prediction and disease penetrance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746595PMC
http://dx.doi.org/10.1002/ajmg.c.31371DOI Listing

Publication Analysis

Top Keywords

implications genetic
4
genetic testing
4
noncompaction/hypertrabeculation
4
testing noncompaction/hypertrabeculation
4
noncompaction/hypertrabeculation noncompaction/hypertrabeculation
4
noncompaction/hypertrabeculation increasingly
4
increasingly recognized
4
recognized children
4
children adults
4
adults understand
4

Similar Publications

Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.

View Article and Find Full Text PDF

KAT2B inhibits proliferation and invasion via inactivating TGF-β/Smad3 pathway-medicated autophagy and EMT in epithelial ovarian cancer.

Sci Rep

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.

Lysine acetyltransferase 2B (KAT2B) plays a crucial role in epigenetic regulation and tumor pathogenesis. Our study investigates KAT2B's function in epithelial ovarian cancer (EOC) using in vivo and in vitro methods. Immunohistochemistry showed the KAT2B expression in EOC tissues.

View Article and Find Full Text PDF

Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy.

Cell Death Dis

January 2025

Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.

View Article and Find Full Text PDF

Short-term evolutionary implications of an introgressed size-determining supergene in a vulnerable population.

Nat Commun

January 2025

Florida Museum of Natural History, Dickinson Hall, 1659 Museum Road, Gainesville, FL, 32611, USA.

The Thorny Skate (Amblyraja radiata) is a vulnerable species displaying a discrete size-polymorphism in the northwest Atlantic Ocean (NWA). We conducted whole genome sequencing of samples collected across its range. Genetic diversity was similar at all sampled sites, but we discovered a ~ 31 megabase bi-allelic supergene associated with the size polymorphism, with the larger size allele having introgressed in the last ~160,000 years B.

View Article and Find Full Text PDF

Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!