The ultrafast dynamics of photogenerated electrons in multilayer assemblies of CdS nanoparticles prepared on quartz and indium-tin oxide (ITO) substrates were followed by femtosecond (fs) visible-pump/mid-IR probe spectroscopy. Based on the observation of the photoinduced transient absorption spectra in the broad mid-IR range at the multilayer assembly of CdS nanoparticles, the occupation and fast relaxation of higher electronic states (1P(e)) were clarified. As compared with the electron dynamics of isolated (dispersed in solution) nanoparticles, the decay of photoexcited electrons in the multilayer assembly was clearly accelerated probably due to both electron hopping and scattering during interparticle electron tunneling. By using an ITO electrode as a substrate, the effect of the electric field on the photoelectron dynamics in the multilayer assembly was also investigated in situ. Both the amplitude and lifetime of photoexcited electrons gradually reduced as the potential became more positive. This result was explained by considering the reduction of the interparticle tunneling probability and the increase in the electron-transfer rate from the CdS nanoparticle assembly to the ITO electrode.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201300427DOI Listing

Publication Analysis

Top Keywords

multilayer assembly
12
ultrafast dynamics
8
dynamics photogenerated
8
photogenerated electrons
8
electrons multilayer
8
cds nanoparticles
8
photoexcited electrons
8
ito electrode
8
assembly
5
electrons
4

Similar Publications

Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.

View Article and Find Full Text PDF

 Augmentation rhinoplasty requires graft with substantial volume. In cases where patient is reluctant to use costal cartilage, this can be done using septum and conchal cartilage graft. Using the technique of "stacked cartilage graft" an assembly is made using septum and conchal cartilage for nasal augmentation and contour defects.

View Article and Find Full Text PDF

In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.

View Article and Find Full Text PDF

Tailored multilayer nanoparticles against resistant P. aeruginosa by disrupting the thickened mucus, dense biofilm and hyperinflammation.

J Control Release

December 2024

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China. Electronic address:

Therapeutic challenges of chronic pulmonary infections caused by multidrug-resistant Pseudomonas aeruginosa (MDRP. aeruginosa) biofilms due to significantly enhanced antibiotic resistance. This resistance is driven by reduced outer membrane permeability, biofilm barriers, and excessive secretion of virulence factors.

View Article and Find Full Text PDF

Analysis of Liquid Sweat Transport in Underwear Combined with Multilayer Fabric Assemblies for Firefighter Outfits.

Materials (Basel)

December 2024

Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Architecture of Textiles, 90-924 Lodz, Poland.

A firefighter's outfit consists of several layers with distinct properties and functions. These layers serve as barriers against external hazards but also impede the transport of sweat generated by the human body. As a result, sweat vapor often fails to transfer effectively from the body through the firefighter's protective clothing (FPC) to the environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!