Identifying crossover-rich regions and their effect on meiotic homologous interactions by partitioning chromosome arms of wheat and rye.

Chromosome Res

Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040, Madrid, Spain.

Published: August 2013

AI Article Synopsis

  • Chiasmata, which are crucial for genetic recombination, typically form in the distal sections of cereal chromosomes, with active crossover regions enhancing homologous recognition during meiosis.
  • A study of translocated parts of wheat and rye chromosomes revealed different patterns in chiasma formation, indicating that the size of translocated segments can significantly affect the frequency of chiasmata and their interactions.
  • Ultimately, the research suggests that regions in wheat and rye chromosomes that regularly recombine are more involved in effective homologous pairing than those that do not, impacting genetic diversity.

Article Abstract

Chiasmata are usually formed in the distal half of cereal chromosomes. Previous studies showed that the crossover-rich region displays a more active role in homologous recognition at early meiosis than crossover-poor regions in the long arm of rye chromosome 1R, but not in the long arm of chromosome 5R. In order to determine what happens in other chromosomes of rye and wheat, we have partitioned, by wheat-rye translocations of variable-size, the distal fourth part of chromosome arms 1BS and 2BL of wheat and 1RS and 2RL of rye. Synapsis and chiasma formation in chromosome pairs with homologous (wheat-wheat or rye-rye) and homoeologous (wheat-rye) stretches, positioned distally and proximally, respectively, or vice versa, have been studied by rye chromatin labelling using fluorescence in situ hybridisation. Chromosome arm partitioning showed that the distal 12 % of 1BS form one crossover in 50 % of the cells, while the distal 6.7 % of 2RL and the distal 10.5 % of 2BL account for 94 % and 81 % of chiasmata formed in these arms. Distal homoeologous segments reduce the frequency of chiasmata and the possibility of interaction between the intercalary/proximal homologous segments. Such a reduction is related to the size of the homoeologous (translocated) segment. The effect on synapsis and chiasma formation was much lower in chromosome constructions with distal homology and proximal homoeology. All of these data support that among wheat and rye chromosomes, recombining regions are more often involved in homologous recognition and pairing than crossover-poor regions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10577-013-9372-xDOI Listing

Publication Analysis

Top Keywords

chromosome arms
8
wheat rye
8
chiasmata formed
8
homologous recognition
8
crossover-poor regions
8
long arm
8
synapsis chiasma
8
chiasma formation
8
chromosome
7
distal
7

Similar Publications

Summary: Short stature is a common complaint among pediatric visits and the differential diagnosis is extensive. Although some variations in growth are normal, deviation from normal growth is often the first symptom of chronic disease in children. This is true for hormone abnormalities including growth hormone deficiency, hypothyroidism and glucocorticoid excess.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

The genome composition of intermediate wheatgrass (IWG; (Host) Barkworth and D.R. Dewey; 2n = 6x = 42) is complex and remains to be a subject of ongoing investigation.

View Article and Find Full Text PDF

Anderson-Fabry disease is a hereditary, progressive, multisystemic lysosomal storage disorder caused by a functional deficiency of the enzyme α-galactosidase A (α-GalA). This defect is due to mutations in the gene, located in the long arm of the X chromosome (Xq21-22). Functional deficiency of the α-GalA enzyme leads to reduced degradation and accumulation of its substrates, predominantly globotriaosylceramide (Gb3), which accumulate in the lysosomes of numerous cell types, giving rise to the symptomatology.

View Article and Find Full Text PDF

Barley yellow dwarf (BYD) is one of the most serious viral diseases in cereal crops worldwide. Identification of quantitative trait loci (QTLs) underlining wheat resistance to barley yellow dwarf virus (BYDV) is essential for breeding BYDV-tolerant wheat cultivars. In this study, a recombinant inbred line (RIL) population was developed from the cross between Jagger (PI 593688) and a Jagger mutant (JagMut1095).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!