Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection.

Proc Natl Acad Sci U S A

Department of Environmental System Sciences, ETH Zürich, CH-8092 Zürich, Switzerland.

Published: July 2013

The chemical dynamics of lakes and streams affect their suitability as aquatic habitats and as water supplies for human needs. Because water quality is typically monitored only weekly or monthly, however, the higher-frequency dynamics of stream chemistry have remained largely invisible. To illuminate a wider spectrum of water quality dynamics, rainfall and streamflow were sampled in two headwater catchments at Plynlimon, Wales, at 7-h intervals for 1-2 y and weekly for over two decades, and were analyzed for 45 solutes spanning the periodic table from H(+) to U. Here we show that in streamflow, all 45 of these solutes, including nutrients, trace elements, and toxic metals, exhibit fractal 1/f(α) scaling on time scales from hours to decades (α = 1.05 ± 0.15, mean ± SD). We show that this fractal scaling can arise through dispersion of random chemical inputs distributed across a catchment. These 1/f time series are non-self-averaging: monthly, yearly, or decadal averages are approximately as variable, one from the next, as individual measurements taken hours or days apart, defying naive statistical expectations. (By contrast, stream discharge itself is nonfractal, and self-averaging on time scales of months and longer.) In the solute time series, statistically significant trends arise much more frequently, on all time scales, than one would expect from conventional t statistics. However, these same trends are poor predictors of future trends-much poorer than one would expect from their calculated uncertainties. Our results illustrate how 1/f time series pose fundamental challenges to trend analysis and change detection in environmental systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725102PMC
http://dx.doi.org/10.1073/pnas.1304328110DOI Listing

Publication Analysis

Top Keywords

water quality
12
time scales
12
time series
12
fractal scaling
8
stream chemistry
8
1/f time
8
time
6
universal fractal
4
scaling stream
4
chemistry implications
4

Similar Publications

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

Both over-exploitation and exploitation reduction of groundwater can alter the conditions of groundwater recharge and discharge, thereby impacting the overall quality of groundwater. This study utilizes hydrogeochemical methods and statistical analysis to explore the spatial and temporal evolution characteristics and influencing factors of groundwater chemistry in the saline-freshwater funnel area of Hengshui City under exploitation reduction. The results showed that: With the exception of the deep freshwater funnel area in the western region, which exhibits a trend of water quality deterioration (Cl accounted for more than 25%), groundwater quality in the other funnel areas demonstrates an improving trend (HCO[Formula: see text] accounted for more than 25%).

View Article and Find Full Text PDF

Accurate urine sodium measurements at home using Point of Care Testing in patients with Short Bowel Syndrome.

Clin Nutr ESPEN

January 2025

Department of Gastroenterology and Hepatology, Intestinal Failure Unit, Radboud University Medical Centre Nijmegen, Geert Grooteplein 10, 6500 HB, Nijmegen, The Netherlands. Electronic address:

Background And Aims: Measurement of the urine sodium concentration (USC) is a simple procedure that in many patients adequately indicates their hydration status. This is of particular importance in patients suffering from short bowel syndrome (SBS), who may very rapidly dehydrate and are at risk for permanently compromising their kidney function. A point of care test (POCT) that allows reliable measurement of USC would enable these patients to effectively evaluate their sodium- and water balance in the at home setting, thereby avoiding hospital visits and delayed test results.

View Article and Find Full Text PDF

Biological studies reveal the role of trpA gene in biofilm formation, motility, hemolysis and virulence in Vibrio anguillarum.

Microb Pathog

January 2025

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:

Vibrio anguillarum is a pathogen responsible for vibriosis in aquaculture animals. The formation of bacterial biofilm contributes to infections and increases resistance to antibiotics. Tryptophanase and its substrate tryptophan have been recognized as signal molecules regulating bacterial biofilm formation.

View Article and Find Full Text PDF

Immobilization of Peniophora incarnata F1 in PVA-SA-biochar matrix and its degradation performance and mechanism for erythromycin degradation.

J Environ Manage

January 2025

Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China. Electronic address:

Erythromycin is becoming one of the most common contaminants detected in surface water and wastewater, which poses a potential risk to ecological systems and human health. Until now, there is still no effective way to eliminate it. Herein, a novel and efficient erythromycin-degrading fungus Peniophora incarnata F1, capable of utilizing erythromycin as its sole source of carbon and energy, was isolated from contaminated sludge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!