Background: The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels.
Methods: The cardiac phenotype of high-fat diet (HFD)-induced obese wildtype (WT) mice was examined and compared to age-matched genetically obese leptin receptor (LepR)-deficient (LepRdb/db) or lean WT mice. To study the role of leptin-mediated STAT3 activation during obesity-induced cardiac remodeling, mice in which tyrosine residue 1138 within LepR had been replaced with a serine (LepRS1138) were also analyzed.
Results: Obesity was associated with hyperleptinemia and elevated cardiac leptin expression in both diet-induced and genetically obese mice. Enhanced LepR and STAT3 phosphorylation levels were detected in hearts of obese WT mice, but not in those with LepR mutations. Moreover, exogenous leptin continued to induce cardiac STAT3 activation in diet-induced obese mice. Although echocardiography revealed signs of cardiac hypertrophy in all obese mice, the increase in left ventricular (LV) mass and diameter was significantly more pronounced in LepRS1138 animals. LepRS1138 mice also exhibited an increased activation of signaling proteins downstream of LepR, including Jak2 (1.8-fold), Src kinase (1.7-fold), protein kinase B (1.3-fold) or C (1.6-fold). Histological analysis of hearts revealed that the inability of leptin to activate STAT3 in LepRdb/db and LepRS1138 mice was associated with reduced cardiac angiogenesis as well as increased apoptosis and fibrosis.
Conclusions: Our findings suggest that hearts from obese mice continue to respond to elevated circulating or cardiac leptin, which may mediate cardioprotection via LepR-induced STAT3 activation, whereas signals distinct from LepR-Tyr1138 promote cardiac hypertrophy. On the other hand, the presence of cardiac hypertrophy in obese mice with complete LepR signal disruption indicates that additional pathways also play a role.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717024 | PMC |
http://dx.doi.org/10.1186/1479-5876-11-170 | DOI Listing |
Nutrients
December 2024
IFF, Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland.
Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).
Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.
Nutrients
December 2024
Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA.
There is controversy about the health risks of sugary diets. A recent study reported that chronic consumption of 11% sugar solutions improved glycemic control in lean mice. Based on this finding, we hypothesized that chronic consumption of the same 11% sugar solutions would also improve glycemic control in metabolically deranged mice.
View Article and Find Full Text PDFNutrients
December 2024
Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
Background: Maternal obesity detrimentally affects placental function and fetal development. Both alternate-day fasting (ADF) and time-restricted feeding (TRF) are dietary interventions that can improve metabolic health, yet their comparative effects on placental function and fetal development remain unexplored.
Objectives: This study aims to investigate the effects of ADF and TRF on placental function and fetal development during maternal consumption of a high-fat diet (HFD).
Int J Mol Sci
December 2024
Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
Omega-3 (ω-3) polyunsaturated fatty acids in fish oil have been shown to prevent diet-induced obesity in lean mice and to promote heat production in adipose tissue. However, the effects of fish oil on obese animals remain unclear. This study investigated the effects of fish oil in obese mice.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China. Electronic address:
Obesity and its related metabolic disorders seriously threaten our health and significantly reduce our life expectancy. The aim of the present study was to explore the effects of bone marrow mesenchymal stem cells (BMSCs) on high-fat diet (HFD)-induced obesity mice. The results demonstrated that BMSCs significantly reduced body weight, improved glucose tolerance and insulin sensitivity in obese mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!