Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The band gap of indium gallium nitride can be tuned by varying the compositional ratio of indium to gallium, spanning the entire visible region and extending into the near-infrared and near-ultraviolet. This tunability allows for device optimization specific to different applications, including as a biosensor or platform for studying biological interactions. However, these rely on chemically dependent interactions between the device surface and the biostructures of interest. This study presents a material gradient of changing In:Ga composition and the subsequent evaluation of amino acid adsorption to this surface. Arginine is adsorbed to the surface in conditions both above and below the isoelectric point, providing insight to the role of electrostatic interactions in interface formation. These electrostatics are the driving force of the observed adsorption behaviors, with protonated amino acid demonstrating increased adsorption as a function of native surface oxide buildup. We thus present a gradient inorganic substrate featuring varying affinity for amino acid adhesion, which can be applied in generating gradient architectures for biosensors and studying cellular behaviors without application of specialized patterning processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am4015555 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!