Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Silica sol was prepared by acid catalyzed sol-gel process using tetraethylorthosilicate (TEOS) as precursor and dimethyldietoxysilane (DDS) as pore-forming agent. A novel kind of monolayer microporous silica anti-reflective (AR) coating was obtained on K9 glass substrate by dip-coating technique and then heat treated at 500 degrees C. The effects of different DDS/TEOS molar ratios on refractive index, transmittance and hardness were investigated. A positive correlation was found between the transmittance and the DDS/TEOS molar ratio due to the increasing porosity. The maximum transmittance can reach 99.7% with the molar ratio of DDS/TEOS rising to 1 : 1. Meanwhile, the refractive index was found quite close to the ideal value 1.22. Nevertheless, higher molar ratio will lead to a bad film-forming property. On the other hand, the hardness of the coatings decreased with the DDS increasing but still remained more than 2 h when the transmittance reached highest. Besides, these coatings exhibit a well abrasion-resistance and excellent adhesivity. The maximum transmittance was only dropped by 0.071% and 0.112% after abrasion for 500 and 1 000 times respectively. Accelerated corrosion tests indicated that the transmittance of traditional coatings rapidly fell down to the substrate level (-92%) after immersion for 5 min, while the transmittance of our novel coating almost linearly decreased and was kept 93.2% after 56 min. In other words, the environment-resistance of our novel silica AR coating is ten times higher than that of traditional ones. The promotions of the coating performances benefit from its micropore structure (-0. 4 nm) with which water molecule can be effectively prevented. With its high transmittance, good mechanical properties and high environment-resistance, this kind of novel coating has a potential application in the field of solar glass modification to improve its anti-reflective properties.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!