Glutathione is the most abundant low molecular weight thiol-containing molecule in biological cells with a strong tendency to interact with metal ions. Among the eight possible glutathione binding sites, only two are determined as groups that interact with the Cd2+ ion. Analysis of vibrational spectra and 13C and 1H NMR spectra revealed that thiol and glutamyl's carboxylic groups are groups that cooperate in interaction with Cd2+ ions. The coordination of Cd2+ with those groups was supported by the application of auxiliary molecules (D-penicillamine, glycine, cysteine and glutamic acid dipeptides, mercaptosuccinic acid and N-acetyl-L-cysteine). These molecules provide a reliable assignment of the fundamental vibrations in the glutathione vibrational spectra. Concentration-dependent measurements of Cd2+ ions showed that the optimal stoichiometry of coordination with the glutathione molecule is 1:1. The analysis of 3J (Halpha, H(N)) coupling constants and conformational sensitive bands in the glutathione vibrational spectra suggest that interaction with Cd2+ ions significantly alters glutathione backbone conformation. The binding of ions induced the conformational change of the cysteine backbone from a predominantly beta structure to P(II).

Download full-text PDF

Source

Publication Analysis

Top Keywords

vibrational spectra
12
cd2+ ions
12
binding sites
8
interaction cd2+
8
glutathione vibrational
8
glutathione
7
ions
5
cd2+
5
sites cadmium
4
cadmium reduced
4

Similar Publications

Capillary Wave-Assisted Colloidal Assembly.

Langmuir

January 2025

Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.

The self-assembly of nanoparticle colloids into large-area monolayers with long-range order is a grand challenge in nanotechnology. Using acoustic energy, i.e.

View Article and Find Full Text PDF

Optimization of the manufacturing process based on scientific evidence is essential for quality control of active pharmaceutical ingredients. Real-time monitoring can ensure the production of stable quality crystals in the crystallization process. Raman spectroscopy is an attractive tool for pharmaceutical quality evaluation and process analytical technology because of its ability to analyze samples non-destructively and rapidly.

View Article and Find Full Text PDF

Raman spectra of pyromorphite, vanadinite and mimetite at high pressures and high temperatures.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 Guizhou, China. Electronic address:

High-pressure and high-temperature Raman spectra of natural pyromorphite, vanadinite and mimetite were measured up to 11 GPa and 973 K, respectively. No phase transition was observed within the temperature and pressure ranges in this study. Raman modes for pyromorphite, vanadinite and mimetite vary with temperature or pressure linearly.

View Article and Find Full Text PDF

Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear-electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing.

View Article and Find Full Text PDF

Capillary vibrating sharp-edge spray ionization (cVSSI) has been used to control the droplet charging of nebulized microdroplets and monitor effects on protein ion conformation makeup as determined by mass spectrometry (MS). Here it is observed that the application of voltage results in noticeable differences to the charge state distributions (CSDs) of ubiquitin ions. The data can be described most generally in three distinct voltage regions: Under low-voltage conditions (<+200 V, LV regime), low charge states (2+ to 4+ ions) dominate the mass spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!