Development of the testis begins with the expression of the SRY gene in pre-Sertoli cells. Soon after, testis cords containing Sertoli and germ cells are formed and fetal Leydig cells subsequently develop in the interstitial space. Studies using knockout mice have indicated that multiple genes encoding growth factors and transcription factors are implicated in fetal Leydig cell differentiation. Previously, we demonstrated that the Arx gene is implicated in this process. However, how ARX regulates Leydig cell differentiation remained unknown. In this study, we examined Arx KO testes and revealed that fetal Leydig cell numbers largely decrease throughout the fetal life. Since our study shows that fetal Leydig cells rarely proliferate, this decrease in the KO testes is thought to be due to defects of fetal Leydig progenitor cells. In sexually indifferent fetal gonads of wild type, ARX was expressed in the coelomic epithelial cells and cells underneath the epithelium as well as cells at the gonad-mesonephros border, both of which have been described to contain progenitors of fetal Leydig cells. After testis differentiation, ARX was expressed in a large population of the interstitial cells but not in fetal Leydig cells, raising the possibility that ARX-positive cells contain fetal Leydig progenitor cells. When examining marker gene expression, we observed cells as if they were differentiating into fetal Leydig cells from the progenitor cells. Based on these results, we propose that ARX acts as a positive factor for differentiation of fetal Leydig cells through functioning at the progenitor stage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695952 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068050 | PLOS |
BMC Genomics
January 2025
Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
Background: Spermatogonia are essential for the continual production of sperm and regeneration of the entire spermatogenic lineage after injury. In mammals, spermatogonia are formed in the neonatal testis from prospermatogonia (also termed gonocytes), which are established from primordial germ cells during fetal development. Currently, the molecular regulation of the prospermatogonial to spermatogonia transition is not fully understood.
View Article and Find Full Text PDFEndocrinology
January 2025
Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, Québec City, QC G1V 4G2, Canada.
Leydig cells produce hormones that are required for male development, fertility, and health. Two Leydig cell populations produce these hormones but at different times during development: fetal Leydig cells, which are active during fetal life, and adult Leydig cells, which are functional postnatally. Historically, our ability to understand the origin and function of Leydig cells has been made difficult by the lack of genetic models to exclusively target these cells.
View Article and Find Full Text PDFChem Res Toxicol
January 2025
Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
Perfluorodecanoic acid (PFDA), a C10 fluorine-containing compound, is used widely and found to be present anywhere. However, whether it has reproductive toxicity for fetal Leydig cells and the underlying mechanisms remain unknown. PFDA was investigated for its effects on fetal Leydig cells (FLCs) following exposure to 0, 1, 2.
View Article and Find Full Text PDFJ Periodontol
December 2024
Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
Background: Periodontitis can induce systemic inflammation, and it may affect the testicles and male reproductive performance. This study investigated the effects of periodontitis on the testicles, reproductive performance, and offspring development in male rats.
Methods: Male Wistar rats were induced with periodontitis by ligating their first molars.
Commun Biol
November 2024
Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
The pig is an important model for studying human diseases and is also a significant livestock species, yet its testicular development remains underexplored. Here, we employ single-cell RNA sequencing to characterize the transcriptomic landscapes across multiple developmental stages of Bama pig testes from fetal stage through infancy, puberty to adulthood, and made comparisons with those of humans and mice. We reveal an exceptionally early onset of porcine meiosis shortly after birth, and identify a distinct subtype of porcine spermatogonia resembling transcriptome state 0 spermatogonial stem cells identified in humans, which were previously thought to be primate specific.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!