A common hypothesis to explain the effect of litter mixing is based on the difference in litter N content between mixed species. Although many studies have shown that litter of invasive non-native plants typically has higher N content than that of native plants in the communities they invade, there has been surprisingly little study of mixing effects during plant invasions. We address this question in south China where Mikania micrantha H.B.K., a non-native vine, with high litter N content, has invaded many forested ecosystems. We were specifically interested in whether this invader accelerated decomposition and how the strength of the litter mixing effect changes with the degree of invasion and over time during litter decomposition. Using litterbags, we evaluated the effect of mixing litter of M. micrantha with the litter of 7 native resident plants, at 3 ratios: M1 (1∶4, = exotic:native litter), M2 (1∶1) and M3 (4∶1, = exotic:native litter) over three incubation periods. We compared mixed litter with unmixed litter of the native species to identify if a non-additive effect of mixing litter existed. We found that there were positive significant non-additive effects of litter mixing on both mass loss and nutrient release. These effects changed with native species identity, mixture ratio and decay times. Overall the greatest accelerations of mixture decay and N release tended to be in the highest degree of invasion (mix ratio M3) and during the middle and final measured stages of decomposition. Contrary to expectations, the initial difference in litter N did not explain species differences in the effect of mixing but overall it appears that invasion by M. micrantha is accelerating the decomposition of native species litter. This effect on a fundamental ecosystem process could contribute to higher rates of nutrient turnover in invaded ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3688783PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066289PLOS

Publication Analysis

Top Keywords

litter
17
mixing litter
12
litter mixing
12
native species
12
non-additive effects
8
mixing
8
litter invasive
8
mikania micrantha
8
micrantha hbk
8
native plants
8

Similar Publications

Effect of intramuscular treatment with different iron dextran dosages and non-inferiority study to gleptoferron.

Acta Vet Scand

January 2025

Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870, Frederiksberg C, Denmark.

Background: Prevention of iron deficiency in suckling piglets by intramuscular injection of a standardized amount of iron dextran or gleptoferron in the first days of life can lead to over- or underdosage with respective health risks. Currently, combined iron products containing an active substance against coccidia are also used on farms. When using a combination product targeting two diseases, an adjustment of the necessary amount of iron to prevent anaemia in the frame of a farm-specific treatment protocol is not possible.

View Article and Find Full Text PDF

Background: Modern dietary trends have led to an increase in foods that are relatively high in n-6 polyunsaturated fatty acids (PUFAs) and low in n-3 PUFAs. We previously reported that the offspring of mother mice that consumed a diet high in n-6 linoleic acid (LA) and low in n-3 α-linolenic acid (ALA), hereinafter called the LA/ALA diet, exhibit behavioral abnormalities related to anxiety and feeding.

Objective: We currently lack a comprehensive overview of the behavioral abnormalities in these offspring, which was investigated in this study.

View Article and Find Full Text PDF

Maternal exposure to polystyrene nanoplastics during gestation and lactation caused fertility decline in female mouse offspring.

Ecotoxicol Environ Saf

January 2025

School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China; Department of Reproductive Medicine, the 1st affiliated hospital, Jiangxi Medical College, Nanchang University; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, China; HuanKui College, Nanchang University, Nanchang 330031, China; Chongqing Research Institute of Nanchang University, Nanchang University, Nanchang 330006, China. Electronic address:

The impact of micro/nano plastics (MPs/NPs) on human health is a significant area of research. Studies on the effects of maternal exposure to microplastics (MPs) on the fertility in offspring have been conducted, but the damage caused by nanoplastics (NPs) remains ambiguous. In this study, pregnant Kunming mice were exposed to 30 mg/kg/day PS-NPs from 0.

View Article and Find Full Text PDF

Coastal ecosystems are increasingly threatened by the accumulation of marine litter globally. Limited data availability along India's eastern coast hinders targeted mitigation efforts. This study assesses coastal litter along Visakhapatnam, a smart city on India's eastern coast, using the NOAA shoreline debris protocol.

View Article and Find Full Text PDF

Melatonin improves endometrial receptivity and embryo implantation via MT2/PI3K/LIF signaling pathway in sows.

J Anim Sci Biotechnol

January 2025

Key Laboratory of Northwest China's Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Background: Increased backfat thickness of sows in early gestation is negative to reproductive performance. Endometrial receptivity is an important determinant of reproductive success, but it is unclear whether the effect of sow backfat thickness on litter size is associated with endometrial receptivity and whether melatonin treatment may have benefits. The present study seeks to answer these questions through in vitro and in vivo investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!