Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate expression of a number of genes associated with the cellular differentiation and development. Here, we show the abundant and ubiquitous expression of a newly identified splicing variant of mouse Pparγ (Pparγ1sv) that encodes PPARγ1 protein, and its importance in adipogenesis. The novel splicing variant has a unique 5'-UTR sequence, relative to those of Pparγ1 and Pparγ2 mRNAs, indicating the presence of a novel transcriptional initiation site and promoter for Pparγ expression. Pparγ1sv was highly expressed in the white and brown adipose tissues at levels comparable to Pparγ2. Pparγ1sv was synergistically up-regulated with Pparγ2 during adipocyte differentiation of 3T3-L1 cells and mouse primary cultured preadipocytes. Inhibition of Pparγ1sv by specific siRNAs completely abolished the induced adipogenesis in 3T3-L1 cells. C/EBPβ and C/EBPδ activated both the Pparγ1sv and Pparγ2 promoters in 3T3-L1 preadipocytes. These findings suggest that Pparγ1sv and Pparγ2 synergistically regulate the early stage of the adipocyte differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3686765PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065583PLOS

Publication Analysis

Top Keywords

splicing variant
12
adipocyte differentiation
12
novel splicing
8
peroxisome proliferator-activated
8
3t3-l1 cells
8
pparγ1sv pparγ2
8
pparγ1sv
7
pparγ2
6
variant peroxisome
4
proliferator-activated receptor-γ
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!