Metabolic oligosaccharide engineering (MOE) refers to a technique where non-natural monosaccharide analogs are introduced into living biological systems. Once inside a cell, these compounds intercept a targeted biosynthetic glycosylation pathway and in turn are metabolically incorporated into cell-surface-displayed oligosaccharides where they can modulate a host of biological activities or be exploited as "tags" for bio-orthogonal and chemoselective ligation reactions. Undertaking a MOE experiment can be a daunting task based on the growing repertoire of analogs now available and the ever increasing number of metabolic pathways that can be targeted; therefore, a major emphasis of this article is to describe a general approach for analog design and selection and then provide protocols to ensure safe and efficacious analog usage by cells. Once cell-surface glycans have been successfully remodeled by MOE methodology, the stage is set for probing changes to the myriad cellular responses modulated by these versatile molecules. Curr. Protoc. Chem. Biol. 2:171-194 © 2010 by John Wiley & Sons, Inc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757159 | PMC |
http://dx.doi.org/10.1002/9780470559277.ch100059 | DOI Listing |
Alzheimers Dement
December 2024
University of Washington School of Medicine, Seattle, WA, USA.
Background: A drug cocktail targeting different processes of aging was tested in an aging mouse model of Alzheimer's disease (AD) neuropathologic change as an intervention to improve behaviors corresponding to cognitive dysfunction in AD.
Method: A cocktail of acarbose/rapamycin/phenylbutyrate or a control treatment was administered (medicated vs. non-medicated chow) chronically to 22 months-old mice that received viral vector injections to induce amyloid and tau pathology in the hippocampus at 24 months of age.
Sci Rep
January 2025
Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
Expression of recombinant genes can be controlled using inducible promoters. However, the most commonly used IPTG- and arabinose-inducible promoters result in an 'all-or-nothing' response, leading to fully induced and uninduced bacterial subpopulations. Here, we investigate whether appropriate modifications to these promoter systems can be combined into a single vector system, enabling homogenous expression of two genes of interest that can be precisely tuned using inducer concentration.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
Diabetic wounds are notoriously difficult to heal due to impaired cell repair mechanisms, reduced angiogenesis, and a heightened risk of infection. Fibroblasts play a vital role in wound healing by producing extracellular matrix (ECM) components and various growth factors, but their function is inhibited in diabetic wounds. Chitooligosaccharides (COS), intermediate products of chitosan degradation, have shown efficacy in promoting tissue repair, yet their role in diabetic wound healing remains underexplored.
View Article and Find Full Text PDFEnzyme Microb Technol
December 2024
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China. Electronic address:
Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production.
View Article and Find Full Text PDFCommun Med (Lond)
December 2024
Inserm UMRS 1256 NGERE, University of Lorraine, Nancy, France.
Background: Early-life exposures including diet, and the gut microbiome have been proposed to predispose infants towards multifactorial diseases later in life. Delivery via Cesarian section disrupts the establishment of the gut microbiome and has been associated with negative long-term outcomes. Here, we hypothesize that Cesarian section delivery alters not only the composition of the developing infant gut microbiome but also its metabolic capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!