Platelet function beyond hemostasis and thrombosis.

Curr Opin Hematol

Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.

Published: September 2013

Purpose Of Review: The platelet paradigm that is well established in hemostasis and thrombosis can be extended to other disease states. A consideration for some major health issues, such as inflammation, cancer, infection, and neuroscience, and how platelet function impacts the pathophysiology of each clinical situation is provided.

Recent Findings: Decades of research and knowledge of platelet function exist and the same is true for inflammation and cancer. The literature is full of platelet biology overlapping into other, nonthrombotic disease states. However, major gaps exist that prevent a complete mechanistic understanding of platelet function in these other diseases. Although much of the overlap provides antidotal relationships, future studies will likely uncover novel pathophysiological pathways that are highly relevant to human diseases.

Summary: Recent findings in four major disease areas, inflammation, cancer, infection, and neuroscience, are described, with current literature linking the disease to platelet function. The availability of antiplatelet therapies, such as aspirin, exists and future consideration can be given as to whether antiplatelet therapy is potentially beneficial or harmful as the mechanisms of platelet involvement are better defined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876895PMC
http://dx.doi.org/10.1097/MOH.0b013e32836344d3DOI Listing

Publication Analysis

Top Keywords

platelet function
20
inflammation cancer
12
platelet
8
hemostasis thrombosis
8
disease states
8
cancer infection
8
infection neuroscience
8
function hemostasis
4
thrombosis purpose
4
purpose review
4

Similar Publications

Background: The normal values of the complete blood count are part of the foundational medical knowledge that is seldom questioned due to their well-established nature. These normal values are critical for optimal physiological function while minimizing the harmful consequences of an excessive number of blood cells. Thus, they represent an evolutionary trade-off likely shaped by natural selection if they significantly influence individual fitness and exhibit heritability.

View Article and Find Full Text PDF

Background: Spontaneous intracerebral hemorrhage (SICH) is the second most common cause of cerebrovascular disease after ischemic stroke, with high mortality and disability rates, imposing a significant economic burden on families and society. This retrospective study aimed to develop and evaluate an interpretable machine learning model to predict functional outcomes 3 months after SICH.

Methods: A retrospective analysis was conducted on clinical data from 380 patients with SICH who were hospitalized at three different centers between June 2020 and June 2023.

View Article and Find Full Text PDF

Background: Sunitinib resistance is a major challenge in advanced renal cell carcinoma (RCC). Clinically, elucidating the underlying mechanisms and developing practical countermeasures for sunitinib resistance in RCC is desirable. In previous studies, we found that circAGAP1 expression was significantly upregulated in clear cell RCC (ccRCC) and was strongly associated with poor prognosis.

View Article and Find Full Text PDF

Background: The management of acute myeloid leukemia (AML) is hindered by treatment-related toxicities and complications, particularly cytopenia, which remains a leading cause of mortality. Given the pivotal role of the gut microbiota (GM) in hemopoiesis and immune regulation, we investigated its impact on hematologic recovery during AML induction therapy.

Methods: We profiled the GM of 27 newly diagnosed adult AML patients using 16S rRNA amplicon sequencing and correlated it with key clinical parameters before and after induction therapy.

View Article and Find Full Text PDF

Platelet factor 4 (PF4), a specific protein primarily found in megakaryocytes and platelet α-granules, plays an essential role in the coagulation process. It carries a high positive charge and thus has a unique ability to readily form complexes with negatively charged heparin. This interaction between PF4 and heparin plays a crucial role in platelet aggregation and thrombosis, resulting in heparin-induced thrombocytopenia (HIT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!