The orbital anisotropy of hematite (α-Fe2O3) nanorod arrays, an engineered structure commonly investigated for applications in solar water oxidation photoanodes, is probed using polarization-dependent soft X-ray absorption spectroscopy at the O K-edge and at the Fe L2,3-edge. Thereby the unoccupied states of α-Fe2O3 are examined. In the lowest energy region these are found to be strongly-hybridized Fe 3d (a1g) orbitals and O(2-) ligand 2p orbitals, oriented along the c-axis. For [110]-oriented α-Fe2O3 nanocrystals the observed direction of strong hybridization is parallel to the substrate surface (perpendicular to the direction of electron conduction and light propagation in operating electrodes). The Fe L3-edge line shape and aspects of polarization dependence can be reproduced by crystal field atomic multiplet calculations of 2p-to-3d transitions for Fe(3+) in the D3d point group symmetry of metal ions in the corundum structure. Both the O K-edge and Fe L3-edge spectra possess features that may be related to the high density of surface atoms in this nanoscale system. They are associated with partial coordination and therefore reduced symmetry compared to that for Fe(3+) in bulk crystals.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp52527aDOI Listing

Publication Analysis

Top Keywords

orbital anisotropy
8
anisotropy hematite
8
hematite nanorod-based
4
nanorod-based photoanodes
4
photoanodes orbital
4
hematite α-fe2o3
4
α-fe2o3 nanorod
4
nanorod arrays
4
arrays engineered
4
engineered structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!