Purpose Of Review: To review the most recent literature on the management of the orbit under high pressure (the tight orbit) with threatened visual loss.
Recent Findings: Definitive management of traumatic optic neuropathy remains unclear, lacking randomized head-to-head treatment option trials. Instead, numerous case series and anecdotal reports show benefit in each of the four treatment modalities currently in use, but a multitude of variables confound cross-study comparison. In contrast, the management of orbital hemorrhage and orbital emphysema is well known. A number of immunomodulatory protocols have recently arisen for the medical suppression of Graves' ophthalmopathy, but when surgical decompression is required, most authors currently favor a combined transconjunctival and endoscopic endonasal approach.
Summary: This article reviews the anatomy, pathophysiology, diagnosis, and intervention of the 'tight orbit' with associated visual loss. Guidelines for the intervention are given.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MOO.0b013e32836312a1 | DOI Listing |
Nanoscale
January 2025
Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
We propose and characterize a novel two-dimensional material, 2D-CRO, derived from bulk calcium-based ruthenates (CROs) of the Ruddlesden-Popper family, CaRuO ( = 1 and 2). Using density functional theory, we demonstrate that 2D-CRO maintains structural stability down to the monolayer limit, exhibiting a tight interplay between structural and electronic properties. Notably, 2D-CRO displays altermagnetic behavior, characterized by zero net magnetization and strong spin-dependent phenomena, stabilized through dimensionality reduction.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA.
We propose a new stable three-dimensional (3D) porous and metallic boron nitride anode material, named h-BN, with good ductility for sodium-ion batteries (SIBs). Based on first-principles calculations and a tight-binding model, we demonstrate that the metallicity originates from the synergistic contribution of the p-orbital of the sp-hybridized B and N atoms, while the ductility is due to the unique configurations of B-B and N-N dimers in the structure. More importantly, this boron nitride allotrope exhibits a high reversible capacity of 582.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia.
This paper presents the results of quantum-chemical modeling performed by the Density Functional-Based Tight Binding (DFTB) method to investigate the change in the band structure of hybrid materials based on carbon nanotubes and unsubstituted, tetra-, or octa-halogen-substituted zinc phthalocyanines upon the adsorption of ammonia molecules. The study showed that the electrical conductivity of these materials and its changes in the case of interaction with ammonia molecules depend on the position of the impurity band formed by the orbitals of macrocycle atoms relative to the forbidden energy gap of the hybrids. The sensor response of the hybrids containing halogenated phthalocyanines was lower by one or two orders of magnitude, depending on the number of substituents, compared to the hybrid with unsubstituted zinc phthalocyanine.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 54, 10-710, Olsztyn, Poland.
A theoretical investigation of spin-orbit coupling effect on magnetotransport of a monolayer graphene system having the geometry of Aharonov-Bohm interferometer is presented. The spin-orbit interaction is considered in the form of Rashba spin-orbit (RSO) coupling. The problem is studied within atomistic tight-binding approximation in combination with non-equilibrium Green's functions formalism.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China.
As a key science project of the Square Kilometre Array (SKA), the discovery and timing observations of radio pulsars in the Galactic Center would provide high-precision measurements of the spacetime around the supermassive black hole, Sagittarius A* (Sgr A*), and initiate novel tests of general relativity. The spin of Sgr A* could be measured with a relative error of ≲1% by timing one pulsar with timing precision that is achievable for the SKA. However, the real measurements depend on the discovery of a pulsar in a very compact orbit, P_{b}≲0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!