Surface of La(0.7)Sr(0.3)MnO3 (LSMO) magnetic nanoparticles (MNPs) is functionalized with polymer (dextran) and their colloidal stability in various mediums is carried out. The influence of the surface functionalization of LSMO MNPs on their colloidal stability in physiological media is studied and correlated with their hyperthermia properties. Many studies have concerned the colloidal stability of MNPs coated with polymer, but their long-term stability when such complexes are exposed to physiological media is still not well understood. After zeta potential study, it is found that the dextran coating on MNPs improves the colloidal stability in water as well as in physiological media like PBS. The specific absorption rates (SAR) of these MNPs are found to be in 50-85 W/g in different concentrations of glucose and NaCl; and there values are suitable for hyperthermia treatment of cancer cells under AC magnetic field. After incorporation of MNPs up to 0.2-1mg/mL in 2 × 10(5)cells/mL (L929), the apoptosis and necrosis studies are carried out by acridine orange and ethidium bromide (AO and EB) staining and followed by visualization of microstructures under a fluorescence microscope. It is found that there are no morphological changes (i.e. no signs of cell rounding, bubble formation on the membrane and nuclear fragmentation) suggesting biocompatibility of dextran coated LSMO nanoparticles up to these concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2013.06.014 | DOI Listing |
Pharm Res
January 2025
BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA.
Background: High concentration protein formulation (HCPF) development needs to balance protein stability attributes such as conformational/colloidal stability, chemical stability, and solution properties such as viscosity and osmolality.
Methodology: A three-phase design is established in this work. In Phase 1, conformational and colloidal stability are measured by 384-well-based high-throughput (HT) biophysical screening while viscosity reduction screening is performed with HT viscosity screening.
Int J Biol Macromol
January 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200443, China. Electronic address:
Though warangalone has shown anticancer properties against breast cancer cells, its colloidal stability and therapeutic index ought to be improved using a potential strategy, especially via protein-based (nano)carriers. In this research, transferrin was used as a plasma protein for the development of the warangalone-transferrin NPs. To investigate the mechanism underlying the formation of this complex, the interaction between warangalone and transferrin, as well as transferrin NPs, was analyzed using spectroscopic methods.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 PR China. Electronic address:
High-entropy phosphides (HEPs) have garnered increasing interest as innovative electrocatalysts for water splitting, highlighted by their distinctive catalytic activity, elemental synergy, and tunable electronic configuration. Herein, a novel electrode comprising CoNiCuZnFeP nanocubes with rich phosphorus vacancies was fabricated through coprecipitation and phosphorization two-step method. The synergistic interaction among metal elements and the modulation of the electronic configuration by phosphorus vacancies augmentation enhance the catalytic performance for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea. Electronic address:
In recent years, the design of various ultrasound responsive echogenic nanomaterials offers many advantages such as deep tissue penetration, high signal intensity, colloidal stability, biocompatibility and less expensive for ultrasound-based cancer cell imaging while providing the option to monitor the progress of tumor volume during the treatment. Further, the ability of nanomaterials to combine photo-thermal therapy (PTT) and chemotherapy has opened a new avenue in the development of cancer theranostics for synergistic cancer therapy. Herein, we report MoS nanoflowers (NFs) surface decorated with CuS nanorods (NRs) and folic acid-derived carbon dots (FACDs) using cystine-polyethyleneimine (PEI) linker for PTT-chemotherapy.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Biocity (5th fl.), Tykistökatu 6A, 20520 Turku, Finland. Electronic address:
In the realm of hybrid nanomaterials, the construction of core/shell nanoparticles offer an effective strategy for encompassing a particle by a polymeric or other suitable material, leading to a nanocomposite with distinct features within its structure. The polymer shell can be formed via nanoprecipitation, optimized by manipulating fluid flow, fluid mixing, modulating device features in microfluidics. In addition to the process optimization, success of polymer assembly in encapsulation strongly lies upon the favorable molecular interactions originating from the diverse chemical environment shared between core and shell materials facilitating formation of core/shell nanostructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!