Neural stem/progenitor cells (NSCs) proliferate and differentiate under tight regulation by various factors in the stem cell niche. Recent studies have shown that the precursor of nerve growth factor (NGF), proNGF, abounds in the central nervous system (CNS) and that its expression level in the brain is substantially elevated with aging as well as in several types of CNS disorders. In this study, we found for the first time that proNGF inhibited the proliferation of NSCs isolated from postnatal mouse hippocampus and caused cell cycle arrest in the G0/G1 phase without affecting apoptosis. In addition, proNGF reduced the differentiation of NSCs to oligodendrocytes. The effects of proNGF were blocked by the fusion protein of p75 neurotrophin receptor extracellular domain and human IgG Fc fragment (p75NTR/Fc), and by p75NTR knockout, suggesting that proNGF/p75NTR interaction was involved in the effects of proNGF on NSC proliferation and differentiation. proNGF decreased the phosphorylation level of extracellular signal responsive kinase 1/2 (ERK 1/2) in a p75NTR-dependent manner under both self-renewal and differentiation conditions. The inhibition of ERK 1/2 phosphorylation by U0126 significantly reduced the proliferation and oligodendrogenesis of NSCs, indicating that ERK 1/2 inhibition by proNGF partially explains its effects on NSC proliferation and oligodendrogenesis. These results suggest that the proNGF/p75NTR signal plays a key role in the regulation of NSCs' behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scr.2013.05.004 | DOI Listing |
Cells
January 2025
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia.
Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention.
View Article and Find Full Text PDFCell Rep
January 2025
Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:
Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.
View Article and Find Full Text PDFBrain Behav Immun
February 2025
School of Basic Medicine, Gannan Medical University, Ganzhou, PR China.
Psychological stress can lead to emotional disorders, such as anxiety and depression; however, the underlying mechanisms are complicated and remain unclear. In this study, we established a mouse psychological stress model using an improved communication box, in which the psychologically stressed mice received visual, auditory, and olfactory emotional stimuli from the mice receiving electric foot shock, thus avoiding physical stress interference. After the 14-day psychological stress paradigm, our mice exhibited a significant increase in depressive and anxious behaviors.
View Article and Find Full Text PDFNeurosci Lett
January 2025
Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan. Electronic address:
Loss of oligodendrocytes causes severe neurological damage. Oligodendrogenesis is the production of new oligodendrocytes throughout life and includes several developmental stages starting from oligodendrocyte precursor cells (OPCs). The GPR17-expressing cell population, an important intermediate stage in oligodendrocyte development, acts as a reservoir responding to brain injury and ischemia.
View Article and Find Full Text PDFStem Cells
November 2024
Department of Surgery, Division of Anatomy, University of Toronto, Toronto, Canada.
Neural stem cells (NSCs) are found along the neuraxis of the developing and mature central nervous system. They are found in defined niches that have been shown to regulate NSC behaviour in a regionally distinct manner. Specifically, previous research has shown that myelin basic protein (MBP), when presented in the spinal cord niche, inhibits NSC proliferation and oligodendrogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!