In ciliates, basal bodies and associated appendages are bound to a submembrane cytoskeleton. In Paramecium, this cytoskeleton takes the form of a thin dense layer, the epiplasm, segmented into regular territories, the units where basal bodies are inserted. Epiplasmins, the main component of the epiplasm, constitute a large family of 51 proteins distributed in 5 phylogenetic groups, each characterized by a specific molecular design. By GFP-tagging, we analyzed their differential localisation and role in epiplasm building and demonstrated that: 1) The epiplasmins display a low turnover, in agreement with the maintenance of an epiplasm layer throughout the cell cycle; 2) Regionalisation of proteins from different groups allows us to define rim, core, ring and basal body epiplasmins in the interphase cell; 3) Their dynamics allows definition of early and late epiplasmins, detected early versus late in the duplication process of the units. Epiplasmins from each group exhibit a specific combination of properties. Core and rim epiplasmins are required to build a unit; ring and basal body epiplasmins seem more dispensable, suggesting that they are not required for basal body docking. We propose a model of epiplasm unit assembly highlighting its implication in structural heredity in agreement with the evolutionary history of epiplasmins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.protis.2013.04.003DOI Listing

Publication Analysis

Top Keywords

basal body
12
epiplasmins
9
basal bodies
8
ring basal
8
body epiplasmins
8
basal
5
epiplasm
5
epiplasmins epiplasm
4
epiplasm paramecium
4
paramecium building
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!