Fullerenes are carbon spheres presently being pursued globally for a wide range of applications in nanomedicine. These molecules have unique electronic properties that make them attractive candidates for diagnostic, therapeutic and theranostic applications. Herein, the latest research is discussed on developing fullerene-based therapeutics as antioxidants for inflammatory diseases, their potential as antiviral/bacterial agents, utility as a drug delivery device and the promise of endohedral fullerenes as new MRI contrast agents. The recent discovery that certain fullerene derivatives can stabilize immune effector cells to prevent or inhibit the release of proinflammatory mediators makes them potential candidates for several diseases such as asthma, arthritis and multiple sclerosis. Gadolinium-containing endohedral fullerenes are being pursued as diagnostic MRI contrast agents for several diseases. Finally, a new class of fullerene-based theranostics has been developed, which combine therapeutic and diagnostic capabilities to specifically detect and kill cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/nnm.13.99 | DOI Listing |
J Am Chem Soc
December 2024
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
Nano Lett
December 2024
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China.
The endohedral fullerene LuN@C was examined using in situ high-pressure measurements, which included electrical transport, Fourier-transform infrared spectroscopy, and Raman spectroscopy, in combination with theoretical calculations. LuN@C was found to undergo a reversible n- to p-type conversion at ∼8.9 GPa.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
Endohedral metallofullerenes (EMFs) are constructed by fullerene cages encapsulating various metal atoms or metal clusters, which usually exhibit some motion. However, due to the fact that the elusive endohedral dynamics are related to many factors, it remains a challenge to image the motion of internal species. Recently, the electron spin was found to be a sensitive probe to detect the motion of internal species in EMFs.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
Since the discovery of La@C, a wide array of endohedral metallofullerenes (EMFs) have been synthesized and documented. Various metals, including lanthanides, transition metals, alkali metals, alkaline earth metals and actinides, have been successfully incorporated into the inert fullerene cavities. The interaction between these encapsulated metal species and the fullerene cage isomers plays a crucial role in determining distinct molecular structures and imparting versatile chemical behaviors to these compounds.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA.
The electrostatic potential (ESP) has been widely used to visualize electrostatic interactions about a molecule. However, electrostatic effects are often insufficient for capturing the entirety of an interaction or a reaction of interest. In this investigation, intermolecular interaction potential maps (IMIPs), constructed from the potentials derived from energy decomposition analysis (EDA) using density functional theory, were developed and applied to provide unique insight into molecular interactions and reactivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!