Fullerenes are carbon spheres presently being pursued globally for a wide range of applications in nanomedicine. These molecules have unique electronic properties that make them attractive candidates for diagnostic, therapeutic and theranostic applications. Herein, the latest research is discussed on developing fullerene-based therapeutics as antioxidants for inflammatory diseases, their potential as antiviral/bacterial agents, utility as a drug delivery device and the promise of endohedral fullerenes as new MRI contrast agents. The recent discovery that certain fullerene derivatives can stabilize immune effector cells to prevent or inhibit the release of proinflammatory mediators makes them potential candidates for several diseases such as asthma, arthritis and multiple sclerosis. Gadolinium-containing endohedral fullerenes are being pursued as diagnostic MRI contrast agents for several diseases. Finally, a new class of fullerene-based theranostics has been developed, which combine therapeutic and diagnostic capabilities to specifically detect and kill cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.13.99DOI Listing

Publication Analysis

Top Keywords

endohedral fullerenes
8
mri contrast
8
contrast agents
8
application fullerenes
4
fullerenes nanomedicine
4
nanomedicine update
4
update fullerenes
4
fullerenes carbon
4
carbon spheres
4
spheres presently
4

Similar Publications

Fluoride Clusterfullerenes: Tuning Metal-Metal Bonding and Magnetic Properties via Single Fluorine Atom Doping.

J Am Chem Soc

December 2024

College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.

Article Synopsis
  • Endohedral fullerenes are molecules that can encapsulate metal clusters, and this study introduces a new type called fluoride clusterfullerenes (FCFs).
  • The researchers successfully synthesized FCFs using various actinides, rare earth metals, and alkaline earth metals without needing extra modifications, revealing that adding a fluorine atom alters the metal-metal bonding significantly.
  • Their findings indicate that compounds like ThF@(7)-C and CaScF@(6)-C exhibit unique bonding interactions and promising magnetic properties, showcasing the potential of FCFs in future applications.
View Article and Find Full Text PDF

n- to p-Type Conductivity Transition of LuN@C Due to Anisotropic Deformation of Fullerene and Pyramidalization of Endohedral Clusters.

Nano Lett

December 2024

Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China.

The endohedral fullerene LuN@C was examined using in situ high-pressure measurements, which included electrical transport, Fourier-transform infrared spectroscopy, and Raman spectroscopy, in combination with theoretical calculations. LuN@C was found to undergo a reversible n- to p-type conversion at ∼8.9 GPa.

View Article and Find Full Text PDF

Spin probe for dynamics of the internal cluster in endohedral metallofullerenes.

Chem Commun (Camb)

December 2024

MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.

Endohedral metallofullerenes (EMFs) are constructed by fullerene cages encapsulating various metal atoms or metal clusters, which usually exhibit some motion. However, due to the fact that the elusive endohedral dynamics are related to many factors, it remains a challenge to image the motion of internal species. Recently, the electron spin was found to be a sensitive probe to detect the motion of internal species in EMFs.

View Article and Find Full Text PDF

Since the discovery of La@C, a wide array of endohedral metallofullerenes (EMFs) have been synthesized and documented. Various metals, including lanthanides, transition metals, alkali metals, alkaline earth metals and actinides, have been successfully incorporated into the inert fullerene cavities. The interaction between these encapsulated metal species and the fullerene cage isomers plays a crucial role in determining distinct molecular structures and imparting versatile chemical behaviors to these compounds.

View Article and Find Full Text PDF

The electrostatic potential (ESP) has been widely used to visualize electrostatic interactions about a molecule. However, electrostatic effects are often insufficient for capturing the entirety of an interaction or a reaction of interest. In this investigation, intermolecular interaction potential maps (IMIPs), constructed from the potentials derived from energy decomposition analysis (EDA) using density functional theory, were developed and applied to provide unique insight into molecular interactions and reactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!