Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to study the conformation of aggregated proteins in vivo and in vitro. Several different protein aggregates, including amyloid fibrils from several peptides and polypeptides, inclusion bodies, folding aggregates, soluble oligomers, and protein extracts from stressed cells, were examined in this study. All protein aggregates demonstrate a characteristic new β structure with lower-frequency band positions. All protein aggregates acquire this new β band following the aggregation process involving intermolecular interactions. The β sheets in some proteins arise from regions of the polypeptide that are helical or non β in the native conformation. For a given protein, all types of the aggregates (e.g., inclusion bodies, folding aggregates, and thermal aggregates) showed similar spectra, indicating that they arose from a common partially folded species. All of the aggregates have some nativelike secondary structure and nonperiodic structure as well as the specific new β structure. The new β could be most likely attributed to stronger hydrogen bonds in the intermolecular β-sheet structure present in the protein aggregates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi400625v | DOI Listing |
EJNMMI Res
December 2024
μNEURO Research Centre of Excellence, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium.
Background: Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans.
View Article and Find Full Text PDFPNAS Nexus
January 2025
School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA.
Recombinant antibodies are a promising class of therapeutics to treat protein misfolding associated with neurodegenerative diseases, and several antibodies that inhibit aggregation are approved or in clinical trials to treat Alzheimer's disease. Here, we developed antibodies targeting the aggregation-prone β-propeller olfactomedin (OLF) domain of myocilin, variants of which comprise the strongest genetic link to glaucoma and cause early onset vision loss for several million individuals worldwide. Mutant myocilin aggregates intracellularly in the endoplasmic reticulum (ER).
View Article and Find Full Text PDFAlzheimers Res Ther
December 2024
Laboratory of Neurodegenerative Diseases, Center for Biomedicine, Universidad Mayor, Temuco, Chile.
In recent years, a growing body of research has unveiled the involvement of the necroptosis pathway in the pathogenesis of Alzheimer's disease (AD). This evidence has shed light on the mechanisms underlying neuronal death in AD, positioning necroptosis at the forefront as a potential target for therapeutic intervention. This review provides an update on the current knowledge on this emerging, yet rapidly advancing topic, encompassing all published studies that present supporting proof of the role of the necroptosis pathway in the neurodegenerative processes of AD.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.
Background: Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM.
View Article and Find Full Text PDFEur J Pharm Sci
December 2024
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan. Electronic address:
The formation of protein aggregates, which can be immunogenic and lower the efficacy and safety of protein drugs, has been an issue in biopharmaceutical development for more than a decade. Although protein drugs are often shipped as frozen material, the effect of the accidental dropping of frozen proteins, which can occur during shipping and handling, on the physical stability has not been studied. Here, a frozen Fc fusion protein was subjected to dropping stress and the increase in the aggregate concentration was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!